TECHNICAL MANUAL

DIRECT SUPPORT AND GENERAL SUPPORT

MAINTENANCE MANUAL

FOR

MODEM, DIGITAL

DATA MD-920 A/G
(NSN 5820-00-155-8576)

[^0]
WARNING

HIGH VOLTAGE
is used in this equipment

DEATH ON CONTACT

may result if safety precautions are not observed.
115 volts ac is present within the IFC modem. Perform all possible maintenance with power removed. If necessary to perform operations with covers removed and power on, be extremely careful to avoid contact with high voltage.

DON'T TAKE CHANCES!

Technical Manual
No. 11-5820-804-34
Technical Publication
NAVELEX 0969-LP-169-4021
Technical Order
TO 31R5-2G-272

!
DEPARTMENTS OF THE ARMY,
THE NAVY, AND THE AIR FORCE

WASHINGTON, DC 8 June 1976

DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL FOR

MODEM, DIGITAL DATA MD-920A/G
(NSN 5820-01-057-6356)

REPORTING OF ERRORS

You can improve this manual by recommending improvements using DA Form 2028-2 located in the back of the manual. Simply tear out the self addressed form, fill out as shown on the sample, fold it where shown, and drop it in the mail. If there are no blank DA Form 2028-2's in the back of the manual use standard DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forward to: Commander, US Army Communications and Electronics Materiel Readiness Command, ATTN: DRSEL-ME-MQ, Fort Monmouth, NJ 07703.

For Air Force, use USAFLC Form 252 (Request to TO Revision or Change). Forward direct to prime ALC/MST.

For Navy, mail comments direct to: Commander, Naval Electronics Systems Command, LP code 04F4, P.O. Box 8337, San Diego, California 92138.

A reply will be furnished direct to you.

CHAPTER 1.	INTRODUCTION	Paragraph	Page
	Scope	1-1	1-1
	Indexes of publications.	1-2	1-1
	Equipment designators.	1-3	1-1
2.	FUNCTIONING OF EQUIPMENT		
	General.	.2-1	2-1
	Functional description	2-2	2-1
	Imput circuits	2-3	2-4
	Transmit bit synchronizer	2-4	2-5
	Frequency synthesizer	.2-5	2-11
	Coders and interface.	.2-6	2-22
	LOS/cable driver.	.2-7	2-24
	LOS/Cable input circuits	.2-8	2-26
	Receive bit synchronizer	2-9	2-28
	Receive frequency synthesizer	2-10	2-30
	Decoders and interface	2-11	2-31
	Output circuits	2-12	2-33
	Internal clock generator.	2-13	2-34
	Test and monitor functions	2-14	2-36
3.	DIRECT SUPPORT MAINTENANCE INSTRUCTIONS		
SECTION I	General.	. 3-1	
	Scope of direct support maintenance.	3-1	3-1
	DS tools and test equipment3-2	3-1

Dc power supply block diagram
Example of dc-to-dc converter 5-5
Regulator and output circuit block diagram ...
+15 volt voltage regulator 5-6
Overvoltage protector, simplified schematic diagram 5-8
Example of undervoltage detector circuit
Initial test setup - power supply assembly test 5-8Test setup - output ripple regulation and overvoltage trip point test5-9

Typical dc output showing ripple characteristics
Dc-to-dc converter - typical waveforms 5-11

Typical input filter and output drive circuit waveforms 5-20

Top view of power supply
Bottom of power supply chassis with heat sinks folded out
Coders and interface, functional block diagram
Fault and status monitor, functional block diagram
Test circuits, functional block diagram
Input interface, A2A1A2A4 (SM -D-742037) schematic diagram
Transmit bit detector, A2AA1AA17, A2A1A2A11 (SM-D-742045) schematic diagram
Loop filter, A2A1A1A16, A2A1A2A12 (SM-D-731221) schematic diagram
Digital-to-analog converter, A2A1A1A15, A2A1A2A13 (SM-D-731217) schematic diagram
Reference oscillator, A2A1A1A3, A2A1A2A21 (SM-D-742129) schematic diagram
Reference divider, A2A1A1A5, A2A1A2A20 (SM-D-742133) schematic diagram
45 MHz phase lock loop, A2A1A1A6, A2A1A2A18 (SM-D-742113) schematic diagram
45 MHz amplifier, A2A1A A8, A2A1A2A16 (SM-D-742117) schematic diagram
Programmable divider, A2A1A1A2, A2A1A2A23 (SM-D-742109) schematic diagram
Counter encoder, A2A1A1A1, A2A1A2A24 (SM-D-724105) schematic diagram \qquad

15 MHz amplifier, A2A1A1A11, A2A1A2A14 (SM-D-742121) schematic diagram

Mixer/output amplifier, A2A1A1A10, A2A1A2A15 (SM-D-742125) schematic diagram
Coder switch, A2A1A2A6 (SM-D-742041) schematic diagram
Coder interface, A2A1A2A6 (SM-D-742049) schematic diagram
LOS/cable driver, A2A1A2A3 (SM -D-742081) schematic diag ram
NRZ interface, A2A1A2A2 (SM-D-877791) schematic diagram
LOS/cable receiver and decoder, A2A1A2A1 (SM-D-742089) schematic diagram
Line driver, A2A1A1A21, A2A1A1A22, A2A1A1A23 (SM-D-742053) schematic diagram
Stable clock, A2A1A1A12 (SM-D-731201) schematic diagram
11-bit PN sequence generator, A2A1A2A7 (SM-D-742057) schematic diagram
Error comparator, A2A1A2A8 (SM-D-742061) schematic diagram
Digital-to-analog meter, A2A1A2A9 (SM-D-742065) schematic diagram
A1arm circuits, A2A1A2A10 (SM-D-742033) schematic diagram
ICF modem, interconnection diagram (2 sheets)
Color code marking for military standard resistors, inductors and capacitors
Power supply PS-1 (SM -C-759630), schematic diagram
Power supply PSI, assembly A2 (SM-D-822232) schematic diagram

A1I
fold-out illustrations located at the back of the manual.

LIST OF TABLES

Table		Page
1-1	Reference designation/FGC cross reference	1-1
2-1	Phase word format.	2-11
2-2	Synthesizer range selection	2-13
2-3	Divider ratios and VCO outputs.	2-13
2-4	Thumbwheel switch coding.	2-18
2-5	Counter encoder program outputs.	2-21
2-6	Counter encoder range decoding	2-21
2-7	Multiplier and divider control outputs.	2-21
2-8	Balanced amplifier drive .	2-25
2-9	Operation of LOS/cable receiver and decoder selection switches.	2-27
2-10	Test switch selections	2-38
3-1	Self-test initial switch settings.	3-2
3-2	Self-test procedure	3-2
3-3	Coder/decoder test procedure.	3-3
3-4	Fault isolation procedure (POWER in dicator)	3-3
3-5	Fault isolation procedure (ALARM RESET).	3-4

$3-6$
$3-7$
$3-8$
$3-9$
$3-10$
$3-11$
$3-12$
$3-13$
$3-14$
$3-15$
$3-16$
$3-17$
$3-18$
$3-19$
$3-20$
$5-1$
$5-2$
$5-3$
$5-4$
$5-5$
$5-6$
$5-7$
$5-8$
$5-9$
$5-10$
$5-11$
$5-12$
$5-13$
$5-14$
$5-15$
$5-16$
$5-17$
$5-18$
$5-19$

Fault isolation procedure (ALARM OFF) 3-4
Fault isolation procedure (power supply) 3-4
Fault isolation procedure (XMIT SYNTH) 3-4
Fault isolation procedure (RCV SYNTH) 3-5
Fault isolation procedure (TEST 1) 3-5
Fault isolation procedure (TEST 2) 3-5
Fault isolation procedure (TEST 3) 3-6
Fault isolation procedure (TEST 4) 3-6
Fault isolation procedure (TEST 5) 3-6
Fault isolation procedure (momentary RESET) 3-6
Fault isolation procedure (DIFF ENCODE/DECODE) 3-6
Fault isolation procedure (coder/decoder test) 3-7
Alinement and adjustment following repair action 3-7
ICF modem connectors 3-7
Initial control settings for oscillator adjustments 3-8
Performance characteristics 5-2
Load switching and voltage measurements 5-10
Load switching for output ripple measurements 5-10
Loss of +5 volt output, troubleshooting procedure 5-12
Loss of -5 volt output, troubleshooting procedure 5-13
Loss of + 15 volt output, troubleshooting procedure 5-13
Loss of -15 volt output, troubleshooting procedure 5-14
Loss of +5 and -5 volt complementary outputs, troubleshooting procedure 5-14
Loss of +15 and -15 volt complementary outputs, troubleshooting procedure 5-15
Loss of all power supply outputs, troubleshooting procedure 5-15
High output voltage, troubles hooting procedure 5-16
All output voltages low, troubleshooting procedure 5-17
Low + 15 and - 15 volt complementary outputs, troubleshooting procedure 5-17
Low +5 and -5 volt complementary outputs, troubleshooting procedure 5-18
Low output voltage - single output, troubleshooting procedure 5-18
Output voltage oscillation, troubleshooting procedure 5-19
Excessive line frequency ripple on outputs, troubleshooting procedure 5-19
Typical resistance measurements 5-19
Typical voltage measurements 5-20

CHAPTER 1 INTRODUCTION

1-1. Scope

This manual contains necessary information for troubleshooting, repair and maintenance of Modem, Digital Data MD-920A/G, hereafter referred to as the ICF modem. Chapter $\&$ provides a detailed explanation of circuit operation. Direct support troubleshooting and maintenance procedures for the ICF modem are provided in chapter 3 and Chapter 4 provides information for general support maintenance of the ICF modem. Chapter 5provides necessary information for the modem power supply, including functional description, maintenance, repair, and troubleshooting. Appendix A contains references appendix B contains wire lists, and appendix Cdefines mnemonics used on diagrams.

NOTE
Refer to TM 38-750 for Forms and Records, TM 750-224-2 for Destruction of Army Materiel to Prevent Enemy Use, and TM 740-90-1 for Administrative Storage.

1-2. Indexes of Publications

a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.
b. DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment.

1-3. Equipment Designators

Throughout this manual, assemblies and subassemblies are identified by reference designation; e.g., A2A1, A2A1A1, etc. These designators are the same as those marked on the equipment. The maintenance allocation chart in TM 11-5820-804-12 and the repair parts and special tools lists in TM 115820-804-20P and 34P are, however, organized in functional group code (FGC) sequence. To facilitate use of all equipment documentation, a reference designation to functional group code cross reference index is provided in table 11.

Table 1-1. Reference Designation/FGC Cross Reference

Table 1-1. Reference Designation/FGC Cross Reference -Continued

CHAPTER 2

FUNCTIONING OF EQUIPMENT

2-1. General

a. This chapter contains a description of the functioning of the ICF modem. A functional block diagram description of the entire modem is followed by detailed descriptions of each functional block in the modem. The supporting detailed card descriptions are grouped by function; i.e., bit synchronizer, synthesizer, etc.
b. Supporting illustrations such as block diagrams and timing diagrams are included within this chapter. Oversize functional block diagrams are shown in figures FO-1 FO-2, and FO-3
c. The system applications of the ICF modem are explained in the following publications:
TM 11-5820-803-12 Operator's and Organizational Maintenance Manual for Modem, Digital Data MD-921/G
TM 11-5820-804-12 Operator's and Organizational Maintenance Manual for Modem, Digital Data MD920A/G.

2-2. Functional Description

a. General. The ICF modem [fig. 2-1] provides a means of interfacing digital data over a shielded cable or line-of-site (LOS) microwave link by converting between baseband data signals and bipolar NRZ signals. The modem also provides for the interfacing of digital data over a fiber-optic (FO) cable link by converting between baseband data signals and an NRZ signal format. The modem will process data at any rate between 19.200 kb / s and $5.000 \mathrm{Mb} / \mathrm{s}$. Self-test, link test, and on-line fault monitoring functions are built into the modem. External error-correcting coders/decoders (such as Encoder/ Decoder KY-801/GSC (NSN 5895-01-034-1061) [NAVELEX 0967-LP-594-2010; TO 31R5-2GSC1011 may be employed to improve the quality of communications. The modem has independent transmit and receive sections. The transmit section accepts a baseband data input and provides either a bipolar NRZ output or a NRZ output. The receive section accepts either a bipolar NRZ or a NRX input and provides baseband data and reconstructed clock outputs. The NRZ or the bipolar NRZ format for the transmit and receive sections are selectable with internally located modem switches
b. Input Circuits. The input data is accepted through the standard digital inputs from local users.

Input selection and circuit functions are described in detail in paragraph 2-3.
c. Transmit Bit Synchronizer/Clock Synthesizer. The purpose of the bit synchronizer is twofold; derive data clock (timing) for those data streams from the input circuits that do not have an accompanying clock signal, and to smooth any input phase jitter or bit distortion of the input signal. The clock synthesizer allows the transmit bit synchronizer to operate at any five digit input data rate from $19.200 \mathrm{~kb} / \mathrm{s}$ to $5.0000 \mathrm{Mb} / \mathrm{s}$. The bit sync/synthesizer form a phase lock loop that acquires the input data with rate offsets (actual rate compared to INPUT DATA RATE switch setting) of over 250 parts per million, and derives both bit rate and twice bit rate clock signals for use in the processing circuits. The phase lock loop also provides the phase jitter and data bit distortion smoothing. The clock input from the digital user can also be selected as the source for the bit synchronizer. An advantage of using the clock as an input is that it always has maximum transition density, providing the transmit bit synchronizer with the highest possible number of phase updates to the phase lock loop. The input data is then retimed by the smoothed clock signal, thus removing distortion from the input data. The bit synchronizer and clock synthesizer controls and circuit functions are described in detail in paragraphs 2-4

and $2-5$.

d. Coders and Interface.

(1) The nature of some digital communications links results in an ambiguity between digital ONE's and ZERO's in the detected data stream. To eliminate this ambiguity, differential encoding of the input data is provided. In the differential coder, the standard Non-Return to Zero-Level (NRZ-L) code (the logic ONE/ZERO information is represented by different levels) is converted to an equivalent NRZ-M (mark) code (the logic ONE/ZERO information is represented by a transition or no transition). The differential decoder in the receive side reconverts the code to NRZ-L.
(2) An interface through high speed, current mode balanced line drivers and receivers is provided between the modem and an external error correcting coder. This permits selection of high gain coders when required. All encoding function may be bypassed completely if desired. The controls and circuit functions of the coders and interface are described in detail in paragraph 2-6
e. Drivers. The driver outputs permit interfacing

Figure 2-1. ICF modem, functional block diagram
the ICF Modem with a remotely located communications terminal. A LOS microwave link, a shielded cable, or a fiber-optic cable link can comprise the interconnect facility used for the interface. The LOS/ cable drive circuit converts the transmitted signal to a bipolar NRZ code format. A separate driver circuit is used to transmit the NRZ format output. The circuit functions are discussed in paragraph 2-7.
f. Receivers. The LOS/cable receiver/decoder circuit accepts a bipolar NRZ input signal from the interconnect facility, provides the appropriate gain and delay equalization, and reconverts the signal to a logiccompatible NRZ format. An additional receiver circuit is provided for accepting input NRZ signals from the interconnect facility. These circuit functions are discussed in paragraph 2-8.
g. Receive Bit Synchronizer/Receive Clock Synthesizer. The data bit decision and clock recovery functions are accomplished by the receive bit synchronizer and the receive clock synthesizer. The combination of these functional blocks forms a phase locked loop which regenerates the clock signals required for the signal processing circuits. The function of this phase locked loop is essentially the same as the Transmit Bit Synchronizer/Synthesizer described in c above. The unique details of the functions are discussed in paragraphs 2-9 and 2-10.
h. Decoders and Interface. The decoders and interface circuits reconstruct the original communications link input data. When error correction encod
ing has been performed at the other end of the link, an external decoder may be selected as required for processing the received signal. The built-in differential decoder is independently selectable. For uncoded inputs, all decoding functions may be bypassed completely. The details of the circuit functions and selection are provided in paragraph 2-11.
i. Output Circuits. The output circuits provide standard data and clock signals from the decoders and interface outputs to a local digital user. Identical alternate data and clock outputs are also furnished.
j. Internal Clock Generator. The transmit clock synthesizer provides signals which are used by the internal clock generator to provide a stable output clock to the digital user at the selected input data rate. These circuits are discussed in detail in paragraph 2-13.
k. Test and Monitor Circuits. Test and monitor circuits within the ICF modem allow monitoring of the operation of the link and provides a means of rapidly localizing malfunctions. Primary signals within the modem are monitored and their status is displayed on front panel lamps or a front panel meter. A pseudo-random sequence generator in the test circuits provides a known modulated signal at the output for link testing transmission. An error comparator in the receiver section detects and initiates a display of errors occurring in this pattern

Change 1 2-3

as received from the communications link. For selftesting, a transmitter test output is relay coupled into the receiver, and the error comparator evaluates the pattern at various functional block outputs. These functions are discussed in paragraph 2-14.

2-3. Input Circuits.

a. General. The input circuits (fig. 2-2) receive standard clock and data inputs and a test sequence from the pseudo random (PN) sequence generator.

Figure 2-2. Input circuits, functional block diagram.
(1) With the STD/CLK/ICF switch set to STD, the standard data input is routed through the input line receivers, gated through the data select gates, and applied through the output OR gate to the transmit bit synchronizer.
(2) With the STD/CLK/ICF switch set to CLK, the standard data input is gated through the data select gates to the data register and loaded into the register by the standard clock input. Standard data is then transferred from the data register

Change 1 2-4
directly to the coders and interface, bypassing the transmit bit synchronizer. To maintain synchronization, the accompanying standard clock is divided by two (to provide a signal with one transition during each bit period) and routed to the data input of the transmit bit synchronizer.
(3) When the SOURCE switch is set to the OPERATE position, the input data selection is controlled by the STD/CLK/ICF switch as indicated above. If the SOURCE switch is set to either the LINK or TEST position, the STD/CLK/ICF switch is disabled, and the test sequence from the PN sequence generator is routed to the transmit bit synchronizer input.
b. Input Interface (fig. (FO-4). The input interface receives standard input data and clock from the digital user and test sequence data from the PN sequence generator. The type of data to be transmitted to the bit synchronizer is selected by inputs from the front panel STD/CLK/ICF switch and the transmit SOURCE switch.
(1) The standard input data, received via P130 and 28 is applied through one section of dual line receiver U3 to AND gate input U5-1 and to steer inputs 2 and 3 of flip-flop U1. If the STD/CLK/ICF switch is in the STD position and the SOURCE switch is in the OPERATE position, AND gate U 5 pins 2,4 , and 5 are enabled by a ground input on P116 and standard data is gated through OR gate U5 (output pin 8) to provide the data input to the transmit bit synchronizer.
(2) Input standard clock is received through switch S1 (which permits clock in version) and applied through the second section of dual line receiver U3. If the STD/CLK/ICF switch is in the CLK position and the SOURCE switch is in the OPERATE position, the line receiver is enabled by a ground input on $\mathrm{P} 1-15$ to gate the clock to the trigger inputs of both flip-flops of U1. In this mode, standard data is loaded in flip-flop U1 (output pin 5) at the input clock rate and shifted to flip-flop U2 by the clock input from the frequency synthesizer. The output of U2 is then routed directly to the differential encoder. The clock divided by two output of U2-9 is OR'ed by U5 and used as the data input to the bit synchronizer.
(3) The test sequence input (P1-12) from the PN sequence generator is applied to pins 9 and 12 of AND gates of U6. When the SOURCE switch is in the OPERATE position, U6-8 is disabled by a ground input at $\mathrm{P} 1-13$. The test sequence is gated via OR gate U 5 to the bit synchronizer when the transmit SOURCE switch is in the LINK or TEST
positions. The STD/CLK/ICF switch is also disabled when the SOURCE switch is in the LINK or TEST positions, which disables the standard data and standard clock inputs. Refer th figure 2-2 for the switch connections.

2-4. Transmit Bit Synchronizer

a. General. The bit synchronizer(fig 2-3) provides a phase lock loop to maintain synchronization of transmitted bit rate and data. The input NRZ-L data is clocked into the bit detector phase flip-flop at beginning of bit period and into the data flip-flop at mid-bit period. Also at mid-bit period, the contents of the two flip-flops are transferred to the storage register. The transition detector compares the data from the storage register (preceeding data bit) with the content of the data flip-flop (present data bit) to determine whether a transition has occurred. An adder compares the stored phase bit with the present data bit. These bits are the same if bit rate is in sync or slightly behind data and the adder output is a ONE. If bit rate is ahead of data, the phase flip-flop loads the preceding bit and the adder output is a ZERO. Thus, the transmit bit detector acts as an early/late transition detector. If a transition has occurred, the adder output is gated to the loop filter. The DATA output of the data flip-flop is also applied to a retriggerable oneshot circuit. The circuit has a relatively long output pulse and is triggered by normal data transitions so frequently that its output is not allowed to expire. However, when data input ceases, the pulse expires and a loss of lock signal is routed via an OR gate to the alarm card. A second one-shot receives outputs from the loop filter up/ down counter overflow circuits. Whenever the counter capacity is exceeded, the one-shot is triggered to develop a negative output to indicate loss of lock.
The loop filter arithmetic circuits receive the phase MSB and transition bit (the MSB is jumpered to three loop filter inputs). These bits are added to bits previously received to develop an up or down count to the accumulator. The accumulator is equipped with overflow detection circuits that provide input to the loss of lock circuits on the transmit bit detector. The accumulator output is added to the contents of the input register to develop an 8 -bit digital control word representing phase error. The adder output is then loaded into a storage register on the D/A converter card. The output of the D/A input register is converted to an analog current by the D/A converter. The analog current is used as a phase correction signal to the transmit frequency synthesizer.

Figure 2-3. Transmit bit synchronizer, functional block diagram.
b. Transmit Bit Detector (fig. FO-5) The transmit bit detector receives data and bit rate inputs and provides outputs to the loop filter indicating whether bit rate leads or lags the data. The transmit bit detector also provides a loss of lock indication when data stops or when the loop filter up/down counter overflows (in either direction).
(1) The transmit data input (P1-12) is applied so pin 2 of data flip-flop U3 and pin 2 of phase flip-flop U4 (the other flip-flops of U3 and U4 are not used). The bit rate complement ($\mathrm{P} 1-15$) is delayed by double inversion through circuits of U2 and loads data into phase flip-flop U4. If clock and data are
exactly in sync or if clock lags data, phase flip-flop U4 is loaded near the leading edge of data. If clock leads data, the flip-flop is loaded near the trailing edge of data. The Q output of U4 is applied to the C input of storage register U6.
(2) Bit rate true ($\mathrm{P} 1-34$) is received through circuits of U1 and, at mid-bit period, clocks storage register U6 to load the contents of phase flip-flop U4 into the C stage and to load the previous data bit from data flip-flop U3 into the A stage. Bit rate true also loads the new data bit into data flip-flop U3. (Refer to figure 2-4 for bit detector timing.)

IN SYNC OR CLOCK LAGS

Figure 2-4. Transmit bit detector, timing diagram.
(3) Exclusive OR U10 compares the new data bit from the Q output of U3 with the previous data bit from the QA output of storage register U6 to determine whether a data transition has occurred. The data transition signal enables gate U8 and is routed to the loop filter via P1-24. detector, timing diagram.
(4) The MSB input to the loop filter is formed by adder U7. This circuit sums the output of data flip-flop U3 and the output from Q c of storage register U6 (with a constant ONE carry input). Since the data flip-flop and storage register are clocked simultaneously, the adder inputs will be the same if the phase flip-flop loaded
the current data bit (clock in sync with the data or clock lagging data). With both inputs the same, the adder output is a ONE.. Assuming a data transition and clock leading data, the phase flip-flop would load the previous data bit, the adder inputs would differ, and the adder output is a ZERO. The adder output is AND'ed with the transition bit and the resultant output MSB (U8-12) s routed to the loop filter via P1-22.
(5) Circuit U5 is a retriggerable one-shot with an output pulse period exceeding six seconds. The oneshot is triggered each time a data ZERO is loaded into flip-flop U3, thus maintaining a high to pin 3 of U8. If data ceases, the one-shot output expires and a loss of lock indication (logic ZERO) is developed by gate U8 at P1-17.
(6) Loss of lock is also developed when the loop filter up/down counter overflows. Either an under or an over count signal from the loop filter triggers one-shot U9. The negation output of the one-shot, via U8, then provides a loss of lock signal to the alarm card.
(7) The bit detector also provides true and complement clock and data outputs. Bit rate complement from U1-6 is routed to the loop filter,
the D / A converter, and to the self-test circuits. Bit rate from $\mathrm{U} 1-8$ is routed to the loop filter and D/A converter. Data complement from U3-6 is routed to the coder switch and data true from U3-5 is routed to the self-test circuits.
c. Loop Filter (fig. FO-6). The loop filter receives four input bits developed from the phase error decision and the transition signal, and bit rate timing inputs. The circuit provides the digital equivalent of a lead integrate analog filter and its output is an eight bit word to the D/A converter.
(1) Figure 2-5 illustrates the loop filter function. The four bit word representing the phase error input is loaded into an input register. An arithmetic unit accumulates the successive phase words by adding each phase word input to the number stored in the arithmetic unit. An 8 -stage up/down counter increases the accumulator capacity. The counter is incremented up or down each time the capacity of the arithmetic unit is exceeded. The final output to the D/A converter is developed by adding the input word to the accumulator output. The output, therefore, is a function of two factors; the phase word in the input register, and the cumulative result of previous phase words.

TO D/A CONVERTER
EL 5820-804-34-TM-5
Figure 2-5. Loop filter, functional block diagram.
(2) The phase word, which is developed from the phase error decision and the transition signal, is loaded into the input register by bit rate clock applied to P1-24. The format of the phase word is defined in table 2-1. When no transition has occurred, the phase word input is all ZERO's. When a transition occurs, the phase word represents a weight and magnitude associated with
the detected phase error. In the transmit bit synchronizer, P1-16, P1-17, and P1-18 are connected together in the card file; thus the input phase word associated with each transition is either a +1 or -1 depending on the early/late gate operation of the transmit bit detector.

Table 2-1. Phase Work Format

Phase error input	$\mathrm{P} 1-15$ $\left(2^{3}\right)$	$\mathrm{P} 1-16$ $\left(2^{2}\right)$	$\mathrm{P} 1-17$ $\left(2^{2}\right)$	P1-18 $\left(2^{0}\right)$
+7	0	1	1	1
+5	0	1	0	1
+3	0	0	1	1
+1	0	0	0	1
-1	0	0	0	0
-3	1	1	0	1
-5	1	0	1	1
-7	0	0	0	1

(3) Adder circuit U6 adds each new phase word with the sum of the previous associated words circulated through register U9. As an example of adder operation, assume U9 contains a binary 9 (1001) and a phase word representing +3 (0011) is present in the input register. The result at the sum output of U6 is a binary 12 (1100), which is entered into U9 at the end of the clock period. The next phase word will be entered into the input register U5 and simultaneously added to the contents of U9 during the next clock period. Assuming this next phase word is a -5 , the result at the sum output of $U 6$ will then be;

$$
\begin{array}{r}
1100 \\
+1011 \\
\hline(1) 0111
\end{array}
$$

where the parenthetical 1 represents a carry output. The 4-bit sum output of U6 is a binary 7 , which is 5 less than the previous number. In the case where the input phase word represents no transition (0000), the sum output of U6 is identical to the contents of U9, and the output of U9 does not change.
(4) Up/down count control to the balance of the accumulator circuitry is controlled by U1-U4. As shown in table 2-1, the LSB (P1-18) of the phase word input is a transition/no transition indicator and the MSB ($\mathrm{P} 1-15$) is a sign indicator. When a positive phase word is present in input registerd U5 (QA low and QD high), the up count control is generated if a carry output from U6 is present. U6-14 high will result in a low at U2-6, and an up count control pulse will be developed at U4-11 afterd U3-6 goes high on the next clock pulse. When a negative phase work is present in input register U5 (QA and QD high), the down count control is developed at U4-8 if no carry output is developed by U6 (U6-14 low).
(5) Since the binary counter chain of U7 and U8 upcounts once each time an overflow from U6 occurs and downcounts each time an underflow occurs, each successive counter stage contains an increasingly significant bit in a binary number representing the phase work accumulation. The status of counters U7 and U8 are transferred into storage registers U10
and $U 11$ at the end of each clock period.
(6) The outputs of the phase word accumulator beginning with the bit representing 26 are used to provide the less significant bits to the D/A converter. The two most significant bits of the phase accumulation are added to the input register by adder U12 with the input bit representing 20 weight being used to develop the 23 input to the D/A converter. The magnitude of each D/A converter input word is therefore equivalent to:

> (Input register state $\times 8$) + (Phase word accumulation +64)

The sign bit to the D/A converter is developed by adder U13.
d. Digital to Analog Converter (fig. FO-7). The digital to analog (D/A) converter accepts the 8-bit output of the loop filter and develops an equivalent analog output to control the frequency of the frequency synthesizer. The 8 -bit output of the loop filter is applied to steer inputs of flip-flops U1 through U4. These flipflops are loaded at bit rate and their outputs drive the D/A converter. The D/A output provides a current source (maximum +.5 milliamperes) to control the frequency of the synthesizer.

2-5. Frequency Synthesizer

a. General. The frequency synthesizer (figure 26) functions as the voltage controlled oscillator for the bit synchronizer. The effective VCO center frequency is selected by five front panel digit switches while tuning is accomplished by the control input from the bit synchronizer. The synthesizer operates over the center frequency range of 10 kHz to 9.9999 MHz , while the tuning range available to the bit synchronizer is a minimum of +0.025 percent of the selected bit rate. The frequency synthesizer utilizes an indirect phase lock loop to develop a stable programmable reference frequency that is then mixed with the output of a VCO. The VCO is tuned by a control input from the bit synchronizer. The difference frequency output between the programmable reference and the VCO is downcounted to produce the center frequency selected by front panel switches.

Figure 2-6. Frequency synthesizer general block diagram.
(1) The synthesizer reference frequencies are developed from a 15 MHz temperature compensated crystal oscillator (TCXO). The output of this oscillator is divided by 37,500 by the reference divider to develop a 400 Hz reference signal to the phase detector.
(2) The phase detector produces a voltage output proportional to the phase difference between the 400 Hz reference signal and the programmable divider output signal. This voltage is then applied to the VCO to adjust the output frequency between 35 and 55 MHz . The VCO output frequency is applied back to the programmable divider input.
(3) The programmable divider divides the VCO output by a number, M, which varies between 87,500 and 137,499 depending on the encoded bit rate selection control inputs. Since the programmable divider
output is applied back to the phase detector input, a feedback loop exists which adjust the VCO to maintain a 400 Hz programmable divider output. Therefore, the VCO provides an internal programmable reference frequency, f_{R}, at a rate equal to $400 \mathrm{~Hz} \times \mathrm{M}$, where M is the selected division ratio of the programmable divider.
(4) The final output frequency is derived by mixing the programmable reference frequency with the output of the 15 MHz VCO, which is controlled by the bit synchronizer. The resultant difference frequency is then divided by selectable decade and binary counters to produce a nominal output rate equal to selected data rate; however, the exact output rate is dependent on the 15 MHz VCO output.
(5) The output frequency is controlled by using the digital thumbwheel switch settings, a number, N , which is derived from the digital thumbwheel switch settings, and the decade switch setting to control the various internal frequency dividers. Operation over the full output frequency range is accomplished by operating in three decade ranges, as indicated on the thumbwheel decade selection switch, and by internally subdividing each decade range into four octave ranges. The octave range of operation defines the value of N as indicated in table 2-2.

Table 2-2. Synthesizer Range Selection

Range	Digital thumbwheel switch setting	N.
A	10000 to 12499	3
B	12500 to 24999	2
C	25000 to 49999	1
D	50000 to 99999	0

(6) To illustrate the frequency synthesis process, assume a case in which an input data rate of $170.00 \mathrm{~kb} / \mathrm{s}$ has been selected. It can be seen from table 2-2 that the digital thumbwheel switch settings will cause the synthesizer to operate in range B
($\mathrm{N}=2$). The programmable divider ratio, M , is given by the expression :

```
M = 37,500 + (2N x switch setting)
```

therefore:

$$
M=37,500+(4 \times 17,000)=105,500
$$

Since the internal phase locked loop forces the programmable reference frequency, $f R$, to be equal to $400 \times \mathrm{M}$, then:

$$
\mathrm{f}_{\mathrm{R}}=400 \times 105,500=42,200,000 \mathrm{~Hz}
$$

The center frequency input to the decade divider is obtained by subtracting 15 MHz from f_{R}, which yields a center frequency of $27,200,00 \mathrm{~Hz}$. The divide by 10 function is selected in this case, and the decade counter produces an output of $2,720,000 \mathrm{~Hz}$. Since N is 2 , the 2 $\mathrm{N}+1$ counter output is $2,720,000 \mathrm{~Hz}+8$, or $34,000 \mathrm{~Hz}$. This signal is available as the $2 \times$ bit rate clock. The final +2 stage produces a bit rate clock at $170,000 \mathrm{~Hz}$, which is equal to the INPUT DATA RATE switch setting of $170.00 \mathrm{~kb} / \mathrm{s}$.
(7) Internal operating rates and ratios for various INPUT DATA RATE switch settings between 1.0000 and $9.9999 \mathrm{Mb} / \mathrm{s}$ are given in table 23 . For the switch settings shown, the decade divider is programmed to divide by 1. Operation in the lower decade range is identical except that the decade divider is programmed to divide by 10 or 100 as required.

Table 2-3. Divider Ratios and VCO Outputs

Range	Switch setting	Multiplier	Constant	Divider ratio	VCO output (MHz)	VCO -15 MHz	$\mathrm{N}+1$ 2	$2 R o u t$ (MHz)	Rout (MHz)
D	$99999 \times$	1	+37500	$=137499$	54.999600	$39.999600 \div$	2	19.999800	9.999900
$(\mathrm{~N}=\mathrm{O})$	50000 x	1	+37500	$=87500$	35.000000	$20.000000 \div$	2	10.000000	5.000000
C	$49999 \times$	2	+37500	$=137498$	54.999200	$39.999200 \div$	4	9.999800	4.999900
$(\mathrm{~N}=1)$	$25000 \times$	2	+37500	$=87500$	35.000000	$20.000000 \div$	4	5.000000	2.500000
B	$24999 \times$	4	+37500	$=137496$	54.998400	$39.998400 \div$	8	4.9998000	2.499900
$(\mathrm{~N}=2)$	$12500 \times$	4	+37500	$=87500$	35.000000	$20.000000 \div$	8	2.5000000	1.250000
A	$12499 \times$	8	+37500	$=137492$	54.996800	$39.996800 \div$	16	2.499800	1.249900
$(\mathrm{~N}=3)$	$10000 \times$	8	+36500	$=117500$	47.000000	$32.000000 \div$	16	2.000000	1.000000

b. Description.

(1) The output of the 15 MHz reference oscillator (fig. 2-7) is applied to a power divider, which provides an output to the internal clock generator and drives a level converter. The con-
verted 15 MHz signal is applied to a fixed counter on the reference divider card. The counter divides by a ratio of 37,500 to produce a 400 Hz reference pulse to the phase detector.

Figure 2-7. Transmit frequency synthesizer, functional block diagram.
(2) The phase detector uses the 400 Hz reference signal to produce an internal voltage ramp each time a reference pulse is received. The output pulse from the programmable divider is then used to sample the ramp voltage. The resultant phase detector output is a voltage proportional to the chase difference between the reference pulse and the Programmable divider output. When the loop is locked, this voltage is used to control the 45 MHz VCO via the loop filter. For acquisition, a frequency detector generates a voltage proportional to the difference between 400 Hz and the output rate of the programmable divider. This voltage is added to the loop filter input, and is also used as a test output.
(3) The 45 MHz VCO output is amplified and filtered on the 45 MHz amplifier card, and distributed to the internal clock generator, the mixer, and the programmable divider input via a power divider.
(4) The programmable divider counts down the VCO output to maintain operation of the phase lock loop at 400 Hz . This is accomplished by first dividing the VCO output by the constant 37,500 plus 1, 2, 4, or 8 times the bit rate switch setting, dependent upon the selected bit rate octave. The 400 Hz output pulse from the programmable divider closes the phase lock loop.
(5) The counter encoder decodes the digital thumbwheel switch settings to determine the octave range of operation and control the number of times the programmable divider divides by the thumbwheel switch setting. The decoder octave range output is also provided to the internal clock generator and the programmable binary counter. The counter encoder also provides the constant 37,500 input to the programmable divider.
(6) The control input from the bit synchronizer is applied through a current-to-voltage amplifier to 15 +0.2 MHz VCO . The $15 _0.2 \mathrm{MHz} \mathrm{VCO}$ output is amplified, filtered, and applied to the mixer/output amplifier. The difference frequency output from the mixer, ranging from 20 to 40 MHz , is routed through a low pass filter to a divider chain. A decade divider is included to provide $-1,+10$, and 100 functions. The 1 function is used for all bit rates over 1.0000 MHz . The 10 and +100 functions provide decade division for frequencies below 1.0000 MHz . Following the decade counter, a binary counter provides division ratios of 2,4 , 8,16 , s selected by the counter encoder, to produce twice the desired bit rate. The output stage is a divide by two flip-flop which provides the bit rate output.
c. Reference Oscillator (fig. Fo-8). The reference oscillator card contains the 15 MHz temperature compensated crystal oscillator (TCXO) and a 30

MHz band-pass filter. Also included on this card is a power divider and level converters.
(1) The reference frequency for the synthesizer is developed by 15 MHz TCXO Y1. This oscillator is stable within $-2 \mathrm{ppm} / 3$ months. The oscillator output is transformer-coupled to one half of dual high speed ECL to TTL level converter U1. The output of $U 1$ is compatible with the divide by 37,500 circuit on the reference divider.
(2) Bandpass filter FL1 receives the 20 -to 40 MHz output of the mixer/amplifier card through a 3 dB attenuator (R3, R5, and R6). The filter center frequency is at 30 MHz , the 1 dB bandwidth is 20 MHz , and the 15 dB bandwidth is 30 MHz . The 30 dB bandwidth is 40 MHz . The output of FL1 is applied through a resistive power divider to the other half of ECL to TTL level converter U1. The level converter output then drives the selectable decade and binary dividers on the reference divider card and the other power divider output (P1-32, 68) is available to the internal clock generator circuit.
d. Reference divider (fig. FO-9). The reference divider provides a divide by 37,500 countdown of the output of the 15 MHz TCXO to produce 400 Hz reference pulses to the phase lock loop. The reference divider card also contains a decade counter to divide the 20-40 MHz output of the mixer/amplifier by 1 , 10 , or 100 dependent upon front panel decade rate range selected. The decade counter output is then applied to a straight binary counter that further divides the clock signal by 2 , 4,8 , or 16 (2N 1) depending on outputs from the counter encoder. The output of the binary counter is 2 times bit rate which is further divided by two to produce bit rate.
(1) The level converted 15 MHz output of the temperature compensated crystal oscillator (TCXO) is divided by a J-K flip-flop of U3 (P1-7) to develop 7.5 MHz into binary counters U4 and U5. Counters U4 and U5 are short counted to divide by 75 (rather than 256) by utilizing the load inputs to preset a count of 181 each time a carry output from U5 occurs. The 100 kHz is used to clock the divide by five counter U6, divide by 50 counters U7 and U8, and output flip-flop U12.
(2) The divide by five counter U6 is preset to count six and the output count 10 is detected by U2 to again preset the counter and to enable divide by 50 counters U7 and U8. These counters are short-counted by presetting to count 206 using the carry output of U8 and the decoded count 10 output of U6 (U2-3) via U2-11. The 400 Hz carry output of U8 steers flip-flop U12 high and then low at a 400 Hz rate to produce a $400 \mathrm{~Hz}, 50-$ microsecond positive pulse from the flip-flop (P1-23).
(3) Control for decade counters U9 and U10 is developed from the bit rate select range switch via inverters in the programmable divider. When no decimal division is required, $\mathrm{U} 13-13$ is enabled by the.-1 control signal (high on P1-30) and clock is routed directly through U13 and U14 to binary counter U11. The 10 control signal (high on P130) enables U13-9 to select the Q D output of U9 to the binary counter, and the -100 control signal (high on P1-21) enables U13-2 to select the QD output of U 10 to the binary Counter.
(4) The counter encoder provides a four bit word to enable one of the U15 AND gates depending on the digital thumbwheel switch settings. These gates receive the $2,-4,+-8$, and +-16 outputs of binary counter Ull11 and gate the selected output which is equal to selected rate times two. Bit rate times two (U14-6) is divided by a flip-flop of U3 to develop the bit rate output.
e. 45 MHz Phase Lock Loop (fig. (FO-10). The 45 MHz phase lock loop card contains a phase detector, a loop filter, a $35-55 \mathrm{MHz} \mathrm{VCO}$, and a frequency discriminator. The synthesizer phase locked loop is closed through the programmable divider card, where the VCO output is counted down to 400 Hz .
(1) The phase detector section of the phase lock is formed by analog switch U1, amplifier AR1, and analog gate U4. This section uses the hold-sample hold technique to develop the phase error voltage.
AR1 and C1 form an inverting integrator circuit. The maximum negative output voltage is determined by VR1 and CR1, which acts as a clamp at -6.2 volts. The integrator receives input currents from one of two sources:
(a) A positive inpur current from the +15 volt supply via R2 and gate U1.
(b) A negative input current from the --15 volt supply via R1 and gate U1. At the beginning of the reference period, the positive reference pulse applied to P1-22 closes three parallel connected gate sections of U 1 and allows current to flow through R2 to the integrator. At this time the remaining gate section of U 1 is also closed (fig. 2-8), but the current through R2 is much greater than the current through R1. Therefore, the integrator output goes negative until the -6.2 volt clamp voltage is reached. The three parallel-connected gate sections of U1 are opened at the end of the reference pulse and the integrator voltage begins a positive ramp due to the input current from R1. The output pulse from the programmable divider is applied to P1-21. When this negative-going pulse arrives, the output of U2-2 opens the U1 gate section connected to R1. The integrator receives no input current, and the integrator output voltage remains constant while the programmable divider output pulse is present. Since this pulse is also applied to P1-23, an internal analog gate in U4 is simultaneously closed. This allows the integrator output voltage to be transferred to C5, which acts as a storage element. The voltage on C5 is buffered internally by U4 and the buffered voltage appears on U4-11. At the end of the output pulse from the programmable divider, U1-3 is closed, the internal gate in U4 is opened, and the integrator output ramp continues until the next reference pulse arrives. If the loop is operating in sync with the reference pulse and the required VCO output frequency is 45 MHz , the hold signal would occur at mid-bit period as the integrator output is crossing through the zero volt level. A positive or negative output of U4 provides speed up or slow down control to the $45+10 \mathrm{MHz} \mathrm{VCO}$ via the loop filter, AR2.

Figure 2-8. Synthesizer phase detector, timing diagram
(2) Amplifier AR2 and associated components form the loop filter at the input to the $45-10 \mathrm{MHz}$ oscillator. The amplifier has a dc gain of approximately 80. A positive 10 volt output of the amplifier will drive oscillator Y 1 to operate at 35 MHz , while a negative 10 volt output causes the oscillator to operate at 55 MHz .
(3) The frequency discriminator is formed by one-shot U3 and operational amplifier AR3. The one shot circuit is triggered by the trailing edge of each sample pulse and develops an output that is adjusted to one-half reference bit period in duration (1.25 milliseconds). When the phase lock loop is operating at 400 Hz , the average output of amplifier AR3 to the loop filter, which represents the sum of the currents through R20 and R15, is zero. When the loop is off-frequency, (not phase locked) the output AR3 to the loop filter provides an error voltage via ,e loop filter AR2 to correct the oscillator output. Resistors R18 and R21 condition the AR3 output to be compatible with the front panel meter.
f. 45 MHz Amplifier (fig. $\mathrm{O}-11$). The 45 MHz amplifier consists of three amplifier stages followed by a low pass filter. The amplifier input from the $45+10 \mathrm{MHz}$ VCO is amplified, filtered, and routed to
the programmable divider, the mixer/output amplifier, and the internal clock generator. The 35 to 55 MHz output of the phase lock loop card, which is received at approximately -8 dBm , is further attenuated by 20 dB across resistors R5 through R7 and applied to the RF amplifier stages. The RF amplifier stages are formed by operational amplifier A R1 and transistors Q1 and Q2. The amplifier has an overall gain of approximately 40 to 45 dB as controlled by variable resistor R24. The amplifier bandwidth is 70 MHz . Each stage of the amplifier is transformer coupled to the next, and the output of transformer T2 is applied to 55 MHz low pass filter FI,1. Filter Fl. 1 suppresses harmonics of the signal and provides an output that is attenuated, split, and routed to the mixer/output amplifier and the programmable divider.
g. Programmable Divider (fig. FO-12). The programmable divider functions within the phase lock loop to count down the 35 to 55 MHz output of the 45 +10 MHz VCO to provide 400 Hz sample pulses to, the sample and hold circuits. This is accomplished by first dividing the VCO output frequency by a 37,500 constant, then further dividing by the digital INPUT DATA RATE switch
setting multiplied by $1,2,4$ or 8 . The divider ratio is thus $37,500+(2 \mathrm{~N} \times$ switch setting $)$ as illustrated in figure 2-9

Figure 2-9. Counter divide by $37,500+2^{N} x$ switch setting(s) modes
(1) The decade counters used in this application count clock pulses in a normal binary sequence up to a count of 9 (1001) which generates a carry output. The next clock pulse causes the counter to increment to 0 (0000), and the counting sequence is repeated. To achieve a specific count, the counter may be preloaded with the 9's complement code for the desired number (seetable 2-4). For example, if a count of 6 is desired, the counter is preloaded with the 9 's complement of 6 , which is a binary 3 (0011). Then, six clock pulses will cause the decade counter to increment to a count of 9 , causing a carry output.

Table 2-4. Thumbwheel Switch Coding

Switch setting	9's complement coding
0	1001
1	1000
2	0111
3	0110
4	0101
5	0100
6	0011
7	0010
8	0001
9	0000

(2) Counters U3 through U7 are decade counters that correspond to the least significant digit through the most significant digit, respectively. The counter array receives either the 9's complement of the fixed program constant of 37,500 (which is 62499) or the 9 's complement output of the INPUT DATA RATE thumbwheel switches via the counter encoder. Counter U8 receives the output of the counter encoder that determines the multiplier; i.e., the number of times the switch selection shall be multiplied. By using 9's complementing, the counter array is preset to the value that will cause the desired number of clock pulses to result in a counter overflow.
(3) Because of the high clock rate, prescaling is required. Prescaler U11 divides by either 10 or 11 depending on whether Ull-3 is high or low, respectively. Counter U3 is loaded with the least significant digit and controls the counting of U11 Prescaler U11 repeatedly counts to 11 until U3 provides a carry out, after which U3 disables itself using the carry output via U1, and U11 provides a divide by 10 function. Transistor Q1 provides the ECL to TTL interface.
(4) To determine how the counter array increments the required number of times for each programmed input, assume a count of 12340 is desired. The 9's complement code for this number is equivalent to a BCD 87659, which would be the initial state loaded into U3 through U7. Since U3 in his case is preset to a count of 9 , the carry output J3-15) would be high, forcing U11 to function simply as a 10 counter. The output rate from U11 is used to clock the rest of the counters, U4 through U7. U2 is connected to decode a load enable signal to the counters when a count of 8 is reached in U4, and U5 through U7 have all reached a count of 9. At this time, the total number of times that the -' 10 output of U 11 has occurred is 99988765 (the original state of U4 through U7), or 1233 times, and the total number of input pulses has been 1233×10, or 12330 input pulses. Since the load input is now enabled, the counter array will reload on the next output transition from U11, or after 10 more input pulses have been received. Therefore, the total number of input pulses occurring from the time the counter array is originally preloaded to the time the next preload occurs is $12330+10$, or the desired count of 12340. If the desired count had been 12345, counters U4 through U7 would have functioned in the same manner. However, U3 would have been preloaded to count of 4 (9's complement of 5), and U11 would nave been forced to act as a 11 counter 5 times before reverting to a 10 counter. Therefore, five extra input pulses would have occurred during the process and the total count would have been $12340+5$, or the desired count of 12345.
(5) The overall timing of the programmable divider is illustrated in figure 2-10 for a switch setting of 15430. At the end of the 37,500 count, flip-flop IJ9-6 is low, forcing U10-8 high which causes the counter encoder to present the switch setting code to
the counter array (U3 through U7) program inputs. When a count of 9998 is reached in U4 through U7, the next clock pulse into the counter array will load the switch program. Since the state of U8 is at 9, the resultant carry output from U8-15 also allows U8 to load a program from the counter encoder into U8. The program received by U8 is the 9's complement of the switch setting multiplier plus 1 . In this case, the synthesizer is operating in range B table 2-2, N is 2 , and the multiplier 2 N is 4 . The 9 's complement of 4 is 5 , so the counter encoder programs U8 with $5+1$, or 6 . The counter array continues to count, and each successive count of 9998 results in reloading the switch setting and advancing the state of U8. At the end of the third switch setting count cycle, U8 is advanced to a state of 9 which, in conjunction with the high output of U9-6 satisfies gate UO1 and presents a low to the counter encoder from U10-8. This low causes the counter encoder to present the program constant 62,499 (9's complement of 37,500) to the counter arra3y and a program 9 to U8. The next count of 9998 in U4 through U 7 has several effects. The counter encoder program is loaded, and the carry pulse from U8-15 allows Ut9-6 to toggle back to a low state as well as steering U9-2 high on the next clock pulse. Now, during the 37,500 count, the low output of U9-6 holds U10-8 high even through U8 is in the 9 state, and switch settings are reapplied to the counter array program inputs. The output of U9-3 is used to control the sample function in the phase detector. This output, which was steered high at the beginning of the 37,500 count, is steered low by U1-2 when a count 6480 is decoded at U211. Thus, U9-2 is high for 231 (6480-6249) cycles of the +10 counter (U11) output, resulting in a $52 \pm 10 \mu \mathrm{sec}$ pulse which repeats each time the divider process goes through a complete cycle.

Figure 2-10. Programmable divider, timing diagram
(6) The inverters of U 12 route the $+1,+10,+$ 100 controls signals from the INPUT DATA RATE switches to the divider circuits on the reference divider card.
h. Counter Encoder (fig. FO-13), The counter encoder, when enabled, gates the 9's complement 20bit code from the five digital INPUT DATA RATE thumbwheel switches (4 bits per switch) to preload the programmable divider card. When thumbwheel switch inputs are inhibited, the counter encoder output is a binary equivalent of the decimal 62499 (9's complement of 37500). The multiplier control section of the counter encoder is programmed by the three most significant thumbwheel switch settings. These digits are examined to determine proper encoding for the programmable
divider multiplier section and the binary counter on the reference divider. When inhibited, multiplier coding is (1001).
(1) Circuits U1 through U4, U7, and U12 through U13 provide for gating of the thumbwheel switch 9's complement code to the programmable divider when enabled by the load signal received vi P1-12. Each input is either inverted twice or not a all to produce no change when the counter encoder is enabled by a high on P1-12. The NAND and AND gates, however, provide a binary equivalent of the decimal 62499 to the programmable divider when the switch inputs are inhibited by a low on P1-12.

The outputs are tabulated in table 2-5
Table 2-5. Counter Encoder Program Outputs

Digit	Bit Pin		(P1-12 low) constant code
(least significant) 2	2^{0}	$\mathrm{P} 1-31$	1
	2^{1}	$\mathrm{P} 1-26$	0
	2^{2}	$\mathrm{P} 1-62$	0
	2^{3}	$\mathrm{P} 1-67$	1
3	2^{0}	$\mathrm{P} 1-33$	1
	2^{1}	$\mathrm{P} 1-28$	0
	2^{2}	$\mathrm{P} 1-64$	0
	2^{3}	$\mathrm{P} 1-32$	1
	2^{0}	$\mathrm{P} 1-39$	0
4	2^{1}	$\mathrm{P} 1-7$	0
	2^{2}	$\mathrm{P} 1-9$	1
	2^{3}	$\mathrm{P} 1-6$	0
	2^{0}	$\mathrm{P} 1-3$	0
5	2^{1}	$\mathrm{P} 1-45$	1
(most significant)	2^{2}	$\mathrm{P} 1-13$	0
	2^{3}	$\mathrm{P} 1-55$	0
	2^{0}	$\mathrm{P} 1-57$	0
	2^{1}	$\mathrm{P} 1-11$	1
	2^{2}	$\mathrm{P} 1-48$	1
	2^{3}	$\mathrm{P} 1-21$	0

(2) To program the multiplier section of the programmable divider and for control of the binary counter on the reference divider, 4-bit digital comparators U1, U5, U6, U8, U9, and U10 are used to examine the three most significant digits of the thumbwheel switch outputs. Output changes occur
at the $50,000,75,000$, and 87,500 points of the 9 's complemented binary input to the counter encoder (see table 2-6). The digital comparators are arranged to detect these numbers and provide the correct output code. Comparator U8 controls the change at the 50,000 point. The most significant thumbwheel switch digit (4bits) is applied to the AO through A3 inputs of the comparator and the B inputs are tied to a fixed count of 5 (binary 1010). Since the $A>B$ input (pin 4) to this comparator is high while the other cascade inputs are low, and $A=B$ output is impossible. The comparator $A>$ B output goes high when the most significant digit is equal to or greater than a binary 5 (switch setting > 4). The code change occurring at 75,000 is detected by comparators U5 and U9 connected in cascade. Connections to U5 are identical to those of U8 except the second most significant digit is examined for a 5 or greater. The outputs of U5 are connected to the cascade inputs of U9 while the AO through a A3 inputs are connected to the most significant digit. The BO through B3 inputs of U9 are connected such that the comparator examines inputs for a magnitude equal to or greater than 7 . The code change at 87,500 is similarly detected by cascaded comparators U1, U6 and U10 which are connected to detect the digits 5,7 , and 8 , respectively. Gates U14 and U15 provide the appropriate output codes to the synthesizer as indicated in table 2-7

Table 2-6. Counter Encoder Range Decoding

	Thumbwheel	Counter encoder	Comparator outputs					
Range	switch settings	binary inputs	UB-7	UB-5		U97		
A	10000 to 12499	89999 to 87500	0	1	0	1	0	1
B	12500 to 24999	87499 to 75000	0	1	0	1	1	0
C	25000 to 49999	74999 to 50000	0	1	1	0	1	0
D	50000 to 99999	49999 to 00000	1	0	1	0	1	0

Table 2-7. Multiplier and Divider Control Outputs

Range	N	2 N	Multiplier program, Z 9's complement of 2"' +1			Binary Counter Control $(\div 2 N+1)$					
			2	P1-71	P1-61	P1-29	P1-35	$\begin{gathered} \div 2 \\ \text { P1-59 } \\ \hline \end{gathered}$	$\begin{gathered} \div 4 \\ \text { P1-24 } \end{gathered}$	$\begin{gathered} \div 8 \\ \text { P1-60 } \end{gathered}$	$\begin{gathered} \div 16 \\ \mathrm{P} 1-46 \end{gathered}$
A	3	8	2	0	0	1	0	1	0	0	0
B	2	4	6	0	1	1	0	0	1	0	0
C	1	2	8	1	0	0	0	0	0	1	0
$\begin{gathered} \text { D } \\ \text { P1-12 } \end{gathered}$	0	1	9	1	0	0	1	0	0	0	1
low			9	1	0	0	0	1	-	-	-
2-21											

i. 15 MHz Amplifier (fig. FO-14). The 15 MHz amplifier card contains a current to voltage amplifier, an RF amplifier, a bandpass filter, and an attenuator. The current to voltage amplifier receives the control input from the bit synchronizer and provides a correction voltage to the 15 MHz VCO. The remainder of the circuits on the card receive the output of the VCO and provide amplification and filtering of the 15 MHz input to the mixer.
(1) The current-to-voltage amplifier, AR1, receives the control current output of the bit synchronizer digital/analog converter. AR1 produces an output voltage proportional to the input current with a scale factor of $3.8 \mathrm{~V} / \mathrm{ma}$. The resultant correction voltage output from AR1 is routed to the control input of the 15 MHz VCO.
(2) The output of the 15 MHz VCO is received through a 6 dB attenuator formed by resistors R14, R15. and R16 and applied to the two stage RF amplifier. This is the same type amplifier as used in the 45 MHz amplifier except that it has no input operational amplifier stage; therefore, the gain is fixed at approximately 24 dB . The amplifier output, at approximately 19 dBm , is applied across a 6 dB attenuator formed by resistors R1, RS, and R6 to bandpass filter FLI. The filter center frequency is 15 MHz , the 20 dB bandwidth is 9 MHz , and the 40 dB bandwidth is 15 MHz . The filter output is applied through 3 dB attenuator R2, R7, and R8 to the mixer/output amplifier.
j. Mixer/Output Amplifier (fig. FO-15). The mixer/output amplifier card contains a double balanced mixer that accepts a $45+10 \mathrm{MHz}$ input and a 15 MHz input to develop a $30 \pm 10 \mathrm{MHz}$ output. The card also contains a three stage RF amplifier and attenuators for matching and level setting. The output (20 to 40 MHz) is routed to a a low pass filter on the reference oscillator card.
(1) The high level $45+10 \mathrm{MHz}$ input is applied across a 2 dB attenuator formed by R8, R11 and R12 and provides a +7 dBm input to mixer U1. The 15 MHz input is applied across a 6 dB attenuator formed by R23 through R25 to provide a 0 dBm input to the mixer. The difference frequency output, 20 to 40 MHz , is applied across a 26 dB attenuator formed by resistor R9, R10, and R13 through R15 to the RF amplifier.
(2) This three stage amplifier is identical to the circuit used on the 45 MHz amplifier card. The amplifier output is applied through a low pass filter on the reference oscillator card to the programmable decade and binary counters on the reference divider card.
k. 15 MHz VCO . The $15 \mathrm{MHz} \mathrm{VCO}, \mathrm{A} 2 \mathrm{Y} 2$, is a Vectron Laboratories, Inc., VCO part number 2721208. The center frequency stability is $1 \mathrm{kHz} /$ day.

The control voltage input is +5.0 volts peak, producing a deviation of +9200 kHz . A screwdriver adjustment permits maintenance adjustment of center frequency.

2-6. Coders and Interface

a. General.

(1) The coder switch section of the coders and interface (fig. FO-1) permits selection of bit syn data or bypass data, provides differential encoding when selected, and provides gating for selection of externally error coded data or data with no error coding.
(2) Bypass data from the input circuits and data from the bit synchronizer are applied to the input data gates. When the STD/CLK/ICF switch is in the CLK position, bypass data is gated to the differential encoder; in either of the other switch positions, bit synchronizer data is gated to the encoder. If the differential coder is enabled (DIFF ENCODE switch in ON position), each data ONE bit received at the input develops a transition at the output while each data ZERO bit produces no transition. When the DIFF ENCODE switch is set to OFF, the data passes through the coder unchanged except for a one-bit period delay. The output of the differential coder is applied to the no error coding gates and, via the coder interface card, to the external error coder. When the TRANSMIT ERROR CODING switch is set to NONE, data an clock are gated directly from the differential coder through the data and clock OR gates to the data out flip-flop.
(3) Data, bit rate clock, and two times bit rate clock are routed via the coder interface to an external coder. If the TRANSMIT ERROR CODING switch is set to EXT, externally coded data (symbols) and accompanying clock are returned via the coder interface and applied through the data out flip-flop. Any of the external coder interface clock signals may be inverted by switches located on the coder interface card. In all coding modes, the data output of the data out flip-flop and clock from the clock OR gate are routed to the LOS/ cable driver
b. Coder Switch (fig. FO-16), The coder switch consists of encoder switching logic and decoder switching logic. Only the encoder switching logic functions are discussed in this paragraph; the decoder switching logic functions are discussed in paragraph 211. The coder switch receives transmit data from the bit synchronizer or directly from I input interface and, if selected, provides differential encoding. The differential coder output is provided for use by an external error correcting coder. The coder switch also provides the selection of the resulting externally encoded data, or the direct
output of the differential coder for subsequent processing by the LOS/cable driver.
(1) When the STD/CLK/ICF switch is in the CLK position (P1-16 grounded), output pin 4 of inverter U14 is high to enable pin 4 of AND gate U1. In this mode, bypass data from the input interface card is gated to the differential coder formed by adder U4 and one flip-flop section of U5 and the transmit bit sync data input (P1-42) is disabled. In any other switch position, data from the transmit bit synchronizer is gated to the differential coder.
(2) In this application, bit rate clock is applied to both P1-9 and P1-43, and twice bit rate clock is applied to both P1-52 and P1-53. Because either U1-1 or U1-10 is high, depending on the input to U14-3, bit rate clock is always present at U1-8 and twice bit rate clock is always present at U8-6.
(3) When differential encoding is selected (DIFF ENCODE switch is set to ON), ground is applied to the pin I input of adder U4. This adder is also grounded at a second input (pin 3) and data is applied to the third (pin $4)$; Therefore, the sum output will be the same as the data input. Thus, JK flip-flop U5 will toggle each time a negative clock trasition occurs when data is a logic ONE and will not switch when data is a logic ZERO. If differential encoding is not selected, a logic ONE is applied to one input of the adder. In this mode, the data is added to ONE (effectively inverted) and applied to the K input of the flip-flop. Thus, the data simply shifts through flip-flop U5. The Q putput of U5 is routed via P151 to the external error correcting coders and is also applied to pin 13 of AND gate U2.
(4) Selection of the signal to be processed is accomplished by AND gates U2 and U6, and the OR gates of U7. These gates are controlled by the TRANSMIT ERROR CODING switch.
(a) When the ERROR CODING switch is in the EXTERNAL position, all AND gates of U2 and U6 are inhibited since P1-15 and P1-24 are both high, forcing U3-6 and U2-8 low. Placing the TRANSMIT ERROR CODING switch in this position applies a ground to P110, causing a high output from U14-6 which is used to enable the external encoder line receivers on the coder interface card. Data (P1-7) and clock (P1-46) from the external coder via the coder interface card are applied to the data out flip-flop U5 through the OR gates of U7.
(b) If the ERROR CODING switch is in the NON position, $\mathrm{P} 1-10$ and $\mathrm{P} 1-24$ are both high, and $\mathrm{Pl}-15$ is grounded. The resultant low output from U14-6 disables the external encoder line receivers on the coder interface card and forces the signals at P1-7 and P1-46 high. The resultant low at U6-2, U6-3 and U2-1 disables these gates. The resultant high at U2-12 and U2-4 allows the differential encoder output (U5-9) and bit rate clock (Ui421 to be gated to data out flip-flop U5 via the OR gates of U7.
(5) The Q output of flip-flop U5-25 provides data and the output of U7-8 provides the appropriate clock (bit rate or bit rate times two) to the LOS/cabledriver.
c. Coder Interface (fig. FO-17). The coder interface card contains five dual line drivers and two dual line receivers that provide interface between the ICF' modem and the external error coder and decoder.
(1) Circuits U1 through U5 are identical dual line drivers that convert logic inputs to differential outputs. A logic ONE is the off state of the driver and a logic ZERO is the on state fig. 2-11. A logic ONE is 0 volt while a logic ZERO is between -70 and -135 millivolts, and the drivers have a current sink of between 3.5 and 7 milliamperes.

Change 1 2-23

Figure 2-11. Coder interface output.
(2) Line receivers U6 and U7 receive differential input signals such as those generated by line drivers U1 through U5, and produce TTL logic compatible outputs. The outputs switch when a differential input voltage of 25 millivolts is received. Line receiver U6 is enabled by a high on pin 6 only when the TRANSMIT ERROR CODING switch is in the EXT position. Otherwise, the outputs remain high when a low is applied to pin 6. Line receiver U7 functions the same way as U6 except that it is enabled only when the RECEIVE ERROR CODING switch is in the EXT position.
(3) Switches S1 through S6 provide the capability of inverting the appropriate balanced input/ output signals. On all switches, position 1 provides the normal polarity and position 2 provides the inverted polarity.

2-7.Drivers

a. General. The ICF modem contains two types of drivers (fig. 2-12), The drivers on the LOS/cable driver card convert the output of the coders and interface to a bipolar NRZ format for transmission over an appropriate interconnect facility (LOS or cable). The drivers on the line driver card retain the NRZ format received from the coders and interface,
for its interface with the interconnect facility. Collectively, the circuits of the drivers are contained on three cards as shown in figure 2-12. The $75-\mathrm{ohm}$ unbalanced, the $50-$ ohm unbalanced, and the LOS out- puts are developed on the LOS/cable driver card, and are routed directly to the appropriate connector pins on the rear panel of the modem. The two 75 - ohm balanced outputs, one from the line driver card (A2A1A1A21) and the other from the LOS/cable driver card (A2A1A2A3), share the same set of out- put pins on the modem rear panel connector. The required switching for selecting either of the two 75ohm balanced signals is located on the NRZ inter- face card (A2A1A2A2), from which the selected signal is applied directly to the output connector pins on the modem rear panel.
b. LOS/Cable Driver (fig. FO-18), The LOS/ cable driver (A2A1A2A3) receives NRZ-L data and clock from the coder section of the coder switch and develops bipolar NRZ outputs at +23 , +10 or 0 dBm to drive cable loads of 50 ohms and 75 ohms unbalanced and 75 ohms balanced. A 75 ohm unbalanced output is also provided at power levels of $-2,-12$, or -22 dBm to drive an LOS microwave link. A test output is also routed to the LOS/cable receiver decoder (A2A1A2A1).

Figure 2-12. Drivers, functional block diagram.

Change 1 2-25
(1) The input logic, U1 through U4, converts the NRZ-L data such that the output amplifiers develop bipolar NRZ data. The bipolar NRZ format is one in which ONE bits are represented by alternate positive and negative levels while ZERO bits are represented by ground levels. When the data input is high (logic ONE), the outputs from inverters of U1 steer flip-flops of U2 such that the input ONE is shifted into U2 (Q output pin 5) and $\mathrm{U} 2(\mathrm{Q}$ output pin 9) is allowed to toggle to the opposite state. Outputs of U3 then steer flip-flops of U4 to provide the appropriate positive or negative control inputs to the amplifiers. When the data input is low (logic ZERO), flip-flop U2 (Q output pin 5) is steered to a zero and both AND gates of U3 are inhibited. The resultant high outputs from AND gates of U3 steer the Q out- put pin 7 of flip-flop U4 low and the Q output pin 6 of flip-flop U14 high. Thus, an input logic ONE causes the states of U4-7 and U4-6 to be identical highs or lows depending on the state of U2, while an input ZERO forces U4-7 low and U4-6 high.
(2) Transistors Q1 and Q2, Q3 and Q4 form a complementary pair of differential current mode switches with OR'ed collectors which assume the states indicated in table 2-8. The output from the junction of Q2 and Q4 is either a positive or negative current, or ground when both transistors are on and the source current equals the sink current. The out- put from the junction of Q1 and Q3 is either a positive or negative current with the opposite polarity from the other current output (Q2 and Q4), or ground when both transistors are off. The voltage levels at the outputs of the current mode switches (which are equal and opposite), and thus the power outputs of the circuit are controlled by using switch S1 to change the load resistances. The link test out- put is taken directly from the attenuator outputs while the ICF data is applied to amplifier/line drivers Q5, Q6 and Q7, Q8. The outputs of the line drivers then drive the ICF cable or LOS microwave link through the appropriate impedance matching resistors.
c. Line Driver (fig. FO-20), The line driver card contains two identical sections to convert logic level inputs to balanced outputs to interface with external equipment.
(1) The logic level inputs to the line drivers are applied through hex inverters of U1 to switching transistors that drive the differential amplifiers.

Since the two driver circuits are identical, only the circuit associated with the P1-16 input is discussed. Transistor Q2 is biased such that when U1-4 is low, Q2 is on, and the current through R4 provides base drive to Q1, which is a saturating switch. Since Q3 receives its base drive from Q1 collector, Q3 will be off. The current through R7, in this case will flow through R2 through CR6, causing Q5 to supply no base drive current to Q7. Since Q7 is off, Q6 will be on because of the base current received through R6The resultant output with S1 in position 1, is P1-22 high and P1-21 low, R8, and R14. When U1-4 goes high, transistor Q4 and diode CR5 will back-bias diode CR6 and cause CR3 to conduct, reversing the states of all the remaining transistors and therefore the outputs.
(2) The amplifier outputs are routed through switches that permit polarity inversion to the output connectors. Each amplifier output is also connected to one section of line receiver U2. The line receivers reconvert the signals to logic-level outputs for test purposes.
d. NRZ Interface (fig. FO-18.1). The two 75-ohm balanced driver outputs are applied to the NRZ interface card. The bipolar NRZ outputs are routed to input pins 31 and 33, and the NRZ outputs are routed to input pins 30 and 32. The position of switch S1 determines which output is selected as the modem output. When S1 is in position 1, the 75 -ohm balanced outputs from the LOS/cable driver card are applied to the modem output connector. When S1 is in position 2, the outputs from the line driver are routed to the modem output connector.

2-8. Receivers

a. General. The receiver circuits (fig. 2-13) accept an input from the interconnect facility. The LOS/cable input circuits provide cable equalization and also convert the bipolar NRZ format to logic- level NRZ-L outputs ffig. 2-14]. The bipolar NRZ format represents ONE bits by alternating positive and negative voltages. Positive and negative comparators in the LOS/cable receiver decoder detect the voltage excursions and develop ICF1 and ICF2 signals which are OR'ed by the input interfaces card to develop logic level ONE bits. The bipolar NRZ ZERO bits are represented by ground levels. In this case, the outputs of both comparators are high with a resultant logic level ZERO from the OR gate (ICF

Table 2-8. Balanced Amplifier Drive

U4-7	U4-6	Q1	Q2	Q3	Q4
1	1	OFF	ON	ON	OFF
0	0	ON	OFF	OFF	ON
0	1	ON	OFF	ON	OFF

data). In the test mode, a similar bipolar NRZ link test signal from the LOS/cable driver is relay switched to the comparators and is inserted in place of the ICF signals. The LOS, 50 -ohm unbalanced, and 75 -ohm unbalanced inputs to the modem are routed directly to the LOS/cable receiver and de- coder card fig. 2-13). The 75-ohm balanced input is applied to the NRZ interface card, where the input
signal is switched to either the 75 -ohm balanced receiver on the LOS/cable receiver and decoder card or is sent to the NRZ receiver on the NRZ interface card. After the LOS, balanced, or unbalanced input signal has been processed by the receiver circuits, the receiver output is sent to the receive bit sync. Relay K1 provides for the application of a test signal to the NRZ receiver.

Figure 2-13. Receivers, functional block diagram.
Change 1 2-26.1

Figure 2-14. Bipolar NRZ to NRZ conversion.
b. LOS/Cable Receiver and Decoder (fig. [FO-19). The LOS/cable receiver and decoder provides input selection, filtering, equalization, amplification, and decoding of the received signal.
(1) The input selection, filtering, and equalization functions of the circuits are controlled by four cardmounted switches, S1 through S4. The functions of these switches are given in table 2-9.

Table 2-9. Operation of LOS/Cable Receiver and Decoder Selection Switches

Switch
A2A1A2A1S1
2
3

A2A1A2A1S2	1
A2A1A2A1S3	2
	1
	2
A2A1A2AIS4	3
	1
	2
	3

Function
Selects input filter for use at input data rates from $19.200 \mathrm{~kb} / \mathrm{s}$ to $225.00 \mathrm{~kb} / \mathrm{s}$ if LOS microwave input is used; selects no first stage of equalization if any cable input is used.
Selects input filter for use at input data rates from $225.01 \mathrm{~kb} / \mathrm{s}$ to $1.8000 \mathrm{Mb} / \mathrm{s}$ if LOS microwave input is used.
Selects input filter for use at input data rates from $1.8001 \mathrm{Mb} / \mathrm{s}$ to $5.0000 \mathrm{Mb} / \mathrm{s}$ if LOS microwave input is used; selects use of first stage of equalization if any cable input is used.
Selects operation with cable inputs.
Selects operation with LOS microwave input.
Selects use of second stage of equalization at decoder input.
Selects use of no equalization or filtering at decoder input.
Selects use of low pass filter at decoder input.
Selects 50 -ohm unbalanced cable input.
Selects 75 -ohm unbalanced cable input.
Selects 75 -ohm balanced cable input.
(2) If an LOS input (P1-2) is used, AR1 provides a stage of preamplification, with a gain of 25 dB . The output of AR1 is applied through one of the switchable lowpass filters to S2. The lowpass filters consist of resistor R5 and the capacitor combinations shown below:

S1 Position	3 dB Bandwidth	Capacitors	Capacitance
1	55 kHz	$\mathrm{C} 9+\mathrm{C} 2$	510 pf
2	3.6 MHz	$\mathrm{C} 9+\mathrm{C} 5$	95 pf
3	10 MHz	C 9	39 pf

(3) If one of the cable inputs is used, S4 is used for input selection. The selected input is routed
through S1, which provides the capability of switching into the circuit a stage of cable equalization (L2, L4, R10, R12) and then to S2 which selects either the LOS or the cable input for further processing.
(4) The input selected by S 2 is amplified by AR2. Resistor R2 permits adjustment of the gain of AR2 to obtain the proper output level ($2.4 \mathrm{~V} p-\mathrm{p}$ at TP1) regardless of the input signal level. Switch S3 permits the selection of a second stage of cable equalization (L3, R14), a lowpass filter (R15, C12) which eliminates system noise above 15 MHz , or a straight through path to the next stage.
(5) Data from AR2 is applied through contacts of relay K 1 (energized except when SOURCE switch is in TEST position) to differential comparators U1 and U2. The threshold of comparator U 1 is set to +03 volt and the threshold of comparator U2 is set to -0.3 volt. When a ONE bit is received, the threshold level of one of the comparators is exceeded, with a resultant ground level output from that comparator. When ZERO bit is received, both comparators produce positive outputs. (These signals are OR'ed in the input interface card to produce NRZ coded data.)
(6) When the SOURCE switch is set to the TEST position, relay K 1 is deenergized by an open at P1-25 and the test output from the LOS/cable driver is routed to the comparators.
c. NRZ Interface (fig. FO-18.1). The NRZ interface provides switching for the 75-ohm balanced, bipolar NRZ and NRZ input signals, and also provides the receiver circuits for NRZ format input signals.
(1) Card-mounted switch S2 is used to switch the balanced input signal, which is received on P1-28 and P1-29. If the balanced input signal is in a
bipolar NRZ format, S2 is placed in position 1 so that the signal is routed to the LOS/cable receiver and decoder through P1-8 and P1-9. For a balanced input signal that is in a NRZ format, S 2 is set to position 2, and the input signal is applied to the NRZ receiver U1 through test relay K1. The output of the NRZ receiver is routed through the digital multiplexer U 2 to the receive bit synchronizer via output pin P1-27.
(2) Relay K1 serves as a means of connecting the NRZ driver output on P1-30 and P1-32 to the input of NRZ receiver U1 for modem self-testing. Relay K1 provides a path for looping the NRZ driver outputs into the NRZ receivers, whenever the SOURCE switch on the front panel is set to the TEST position, which deenergizes the relay.
(3) The digital multiplexer U2 selects one of three inputs to the receive bit synchronizer, de- pending on the position of card-mounted switch S2 and the TEST switch located on the modem front panel. When S2 is in position 1, the output of the LOS/cable receiver on P1-10 is selected and applied to the input to the receive bit synchronizer through P1-27. When S2 is in position 2, the output of the NRZ receiver U1 is applied to the input of the receive bit synchronizer through P1-27. During self- test, when the TEST switch is in position 3, a test sequence presented on P1-12 is selected and applied by the multiplexer to the input of the receive bit synchronizer through P1-27.

2-9. Receive Bit Synchronizer

The operation of the receive bit synchronizer is identical with the transmit bit synchronizer (para 2-4). A functional block diagram of the receive bit synchronizer is shown in figure 2-15

Change 1 2-28

Figure 2-15. Receive bit synchronizer, functional block diagram.

2-10. Receive Frequency Synthesizer

The operation of the receive frequency synthesizer, which is controlled by the RECEIVE SYMBOL RATE
switches, is identical to the transmit frequency synthesizer (para 2-5). A functional block diagram of the receive frequency synthesizer is shown in figure 2-16.

Figure 2-16. Receive frequency synthesizer, functional block diagram.

2-11. Decoders and Interface

a. General. The decoders and interface (fig. 2-17) operates in one of two primary modes dependent upon the setting of the RECEIVE ERROR CODING switch. When the RECEIVE ERROR CODING switch is set to EXTERNAL, the decoders and interface supplies symbol rate clock and symbols from the receive bit synchronizer to the external decoder. The external coder/decoder
then returns decoded data and data rate clock to the decoders and interface. When the RECEIVE ERROR CODING switch is set to NONE, the external decoder is bypassed. As a secondary mode, the output of the decoder switching function is either differentially decoded or not, depending on the setting of the DIFF DECODE switch.

Figure 2-17. Decoders and interface, functional block diagram
(1) The inputs and a one-half symbol rate clock generated by a flip-flop located on the PN sequence generator card are provided to the external decoder via 3 line drivers on the coder interface card. When the RECEIVE ERROR CODING switch is in the EXTERNAL position, an inverter input on the coder switch card is grounded, which enables two line receivers on the coder interface card and allows decoded data from the external decoder to be routed to the differential decoder.
(2) When the RECEIVE ERROR CODING switch is in the NONE position, the external decoder is bypassed and the differential decoder operates directly on the data and clock from the receive bit synchronizer.
(3) The differential decoder receives either externally decoded data or the output from the receive bit synchronizer along with the respective clock signals. With the DIFF DECODE switch in the ON position, the decoder converts input transitions to output ONE's and no transitions to output ZERO's. The differential decoder is bypassed when the DIFF DECODE switch is in the off position. The differential decoder output data, accompanied by clock, is routed to the output circuits.
b. Coder Switch (fig. FO-16)] The coder switch consists of encoder and decoder switching logic. Only those functions associated with the decoders and interface are discussed in this paragraph. The encoder switching functions are covered in paragraph 2-6b.
(1) The decode logic of the coder switch receives data and clock from the external decoder or from the receive bit synchronizer and provides appropriate gating for the selected signals. The decode logic also provides differential data decoding, when selected. When the RECEIVE ERROR CODING switch is in the EXTERNAL position, the external decoder is enabled and data is received via PI-69, OR'ed by U11, and applied to the data input of one flip-flop of U12. The data is loaded by clock from the external decoder received via P1-64 and a second OR gate of U11. When the coder switch is in the NONE position, AND gates of U 10 are enabled by the high output of U3-12. In this mode, data and clock from the receive bit synchronizer are received via P1-32 and P1-33, respectively. The bit synchronizer data is then loaded into flip-flop U12 the same way as for the decoded data. The AND gates of

U9 are not used since they are alwyas inhibited by the low output of U14-12.
(2) The outputs of data flip-flop U12, flip-flops of U13, adder U4 and gates of U8 provide for differnetial decoding or no decoding as selected by the DIFF DECODE switch. When the switch is in the OFF position, AND gate U8 (pm 9) is enabled by a high output from U14-10. The Q output from data flip-flop U12 is then gated and inverted through U8 to the data input of flip-flop U13 (pin 12). When the decode swithc is set to ON, U8-9 is inhibited and U8-13 is enabled. Decoding is then accomplished by summing the Q output of $U 12$ with the Q output of U13. If no transition has occurred between bits, the flip-flop states will be identical and the sum of the outputs will be a ONE. This ONE bit is inverted through gates of U8 and the data output flip-flop, U13, is loaded with a ZERO. When a bit transition has occurred, the and Q outputs are the same (the flip-flop states are different), their sum is ZERO and output flipflop U13 is loaded with a ONE. The data and clock outputs from P1-66 and P1-58 are routed to the output circuits.
c. Coder Interface. The coder interface contains the line drivers and receivers necessary to operate with an external error correcting decoder. The operation of the coder interface is discussed in paragraph 2-6c.

2-12. Output Circuits

a. General. The output circuits generate the necessary output signal characteristics to provide the demodulated data and reconstructed clock to the digital user. A block diagram of the output circuits is shown in figure 2-18. The data and reconstructed clock are provided directly to the digital user via two identical line driver circuits on line driver card A2A1A1A23. The standard data and clock outputs of this card provide 6volt peak-to-peak balanced signals into a balanced 75ohm load. The card also contains a dual line receiver to monitor the data and clock outputs and provide signals compatible with the internal test circuits. Line driver A2A1A1A22 provides an identical set of outputs for use by a second digital user, if required.

Figure 2-18. Output circuits, functional block diagram.
b. Line Drivers (fig. [FO-20). The two line driver cards each contain two identical sections to convert logic level inputs to balanced outputs to interface with external equipment.
(1) The logic level inputs to the line drivers are applied through hex inverters of U1 to switching transistors that drive the differential amplifiers. Since the two driver circuits are identical, only the circuit associated with the P1-16 input is discussed. Transistor Q2 is biased such that when U1-4 is low, Q2 is on, and the current through R4 provides base drive to Q1, which is a saturating switch. Since Q3 receives its base drive from Q1 collector, Q3 will be off. The current through R7, in this case will flow through R2 via CR6, causing Q5 to supply no base drive current to Q7. Since Q7 is off, Q6 will be on because of the base current received through R6, R8, and R14. The resulting output, with S1 in position 1, is P1-22 high, and P1-21 low. When U1-4 goes high, transistor Q4 and diode CR5 will back-bias diode CR6 and cause CR3 to conduct, reversing the
states of all the remainving transistors and therefore the outputs.
(2) The amplifier outputs are routed through switches that permit polarity inversion to the output connectors. Each amplifier output is also connected to one section of line receiver U2. The line receivers reconvert the signals to logic level outputs for test purposes.

2-13. Internal Clock Generator

a. General. The internal clock generator is shown in figure 2-19. The operation of the internal clock generator is similar to the equivalent sections of the transmit frequency synthesizer, discussed in paragraph $2-5$. The stable clock card receives the programmable reference frequency, f R , and a stable $15-\mathrm{MHz}$ reference signal from the transmit frequency synthesizer, and provides a logic-compatible output of the difference frequency.

This function is equivalent to the function of the mixer/output amplifier card along with the filter and level converter located on the reference oscillator card of the transmit synthesizer. The same reference divider is used, and the reference divider control inputs are connected in parallel with the control lines for the
reference divider in the transmit frequency divider. The result, since a stable $15-\mathrm{MHz}$ reference signal is used instead of the $15-\mathrm{MHz}$ VCO output, is a clock signal at the selected INPUT DATA RATE. A line driver provides the clock signal to the digital user as a balanced output.

Figure 2-19. Internal clock generator, functional block diagram.
b. Stable Clock Circuit (fig. FO-21). The stable clock output is the selected bit rate, unaffected by variations in the control voltage to the VCO. To implement this function, the output of the 15 MHz reference oscillator is mixed with the amplified output of the $45+10 \mathrm{MHz}$ phase lock loop oscillator. The resultant $20-\mathrm{to}-40-\mathrm{MHz}$ clock is amplified, filtered, and then downcounted by decade and binary counters on an additional reference divider card.
(1) The $15-\mathrm{MHz}$ input from the reference oscillator is received at the stable clock card via P1-28 and applied across the attenuator formed by resistors R7, R11, and R12 to the input of mixer U1. The $45+10 \mathrm{MHz}$ input from the $45-\mathrm{MHz}$ amplifier is received via P1-11 and applied across the attenuator formed by R23 through R25 to the second input of the mixer. The difference frequency, 20 to 40 MHz , is transformer-coupled to the input of the three stage RF amplifier formed by operational amplifier

AR1 and transistors Q1 and Q2. This amplifier is identical with the circuit used on the 45 MHz amplifier card and has a gain of approximately 40 to 56 dB as controlled by variable resistor R37.
(2) The output of transformer T2 is attenuated by R39, R41, and R42, and applied to low pass filter FLI. This filter suppresses undesired mixer products and provides an output through attenuator R40, R43, and R44 to ECL to TTL converter U2. The resultant stable output between 20 and 40 MHz is a multiple of the selected bit rate and is appropriately counted down to the selected frequency through binary and decade counters of the reference difider.
c. The operation of the reference divider is discussed in paragraph 2-5 d and the operation of the line driver is discussed in paragraph 2-12]b.

2-14. Test and Monitor Functions

a. General. The PSK modem contains a group of circuits which, in conjunction with various front panel indicators, provide a means of monitoring the operational status of the unit. The status monitoring capabilities along with the built-in test circuits provide a means of rapidly verifying operation or diagnosing a malfunction.
b. Fault and Status Monitor Functions. The signal flow of the fault and status monitor functions is shown in figure [FO-2]
(1) The front panel fault indications are developed from the following signals:
(a) The transmit bit detector develops a logic 0 output when, in the transmit bit synchronizer, a loop filter overflow or underflow occurs (para 2-4]b and c).
(b) The transmit bit detector in the receive bit synchronizer develops a logic 0 output when a loop filter overflow or underflow occurs.
(c) The thermostat, which is positioned to monitor the temperature of the outlet air, provides a ground whenever the outlet air temperature exceeds $180^{\circ} \mathrm{F}$.
(2) The presence of a fault indication other than overtemperature causes the same result. Each fault indication sets a latch circuit on the alarm circuits card. Each latch output is applied to one of two OR gates. One OR gate is activated by the transmitter section fault signal and the other by a receiver section fault signal. Each OR gate output illuminates a front panel indicator showing which section developed the fault signal. Additionally, the presence of a fault indication at either OR gate output causes the blinker generator and relay K1 (via driver U1) to be energized. Relay KI provides one contact closure for remote fault status monitoring purposes, and a second contact closure which activates the audible alarm if enabled by the front panel ALARM switch. The blinker generator output is gated with the latch outputs and the fault indicator signals to cause the appropriate front panel indicators to flash as long as the faults are present. If any of the faults are cleared after the appropriate latch circuits have been set, the gating networks provide steady ON indications at the front panel.
(3) The thermostat is connected directly to the associated indicator as well as the reset line and the audible alarm via a diode. In the event of a temperature fault, all fault indicators illuminate and the alarm sounds. In this case, none of the indications can be reset or disabled.
(4) All fault latches are resettable by momentarily setting the ALARM switch to RESET. The RESET position also illuminates all fault indicators for lamp test purposes.
(5) circuits on the digital to analog meter card are connected to monitor the data and clock inputs to the error comparator. The DATA and CLOCK indicators are located in the MONITOR section of the front panel. Each " A " indicator is illuminated when its input is a logic 1 and extinguished when its input is a logic 0 .
(6) The front panel meter is controlled by the METER switch.
(a) With the METER switch in the OFF position, the meter is disconnected.
(b) In the $+5 \mathrm{~V},-6 \mathrm{~V},+15 \mathrm{~V}$, and --15 V positions, the selected power supply voltages are applied to the meter through resistors on the alarm circuits card. The resistance associated with each voltage provides a meter input current of $100 \mu \mathrm{~A}$, which results in a one-half scale deflection when nominal voltage is present.
(c) The $45-\mathrm{MHz}$ phase lock loop cards in the transmit and receive frequency synthesizers each contain circuits which provide a nominal $100 \mu \mathrm{~A}$ output current into the meter when the loop is locked. When the loop is out of lock, the deviation from 100 AA is proportional to the difference between the programmable divider output frequency and the 400 Hz reference frequency (pare 2-5 e). These outputs are displayed on the meter when the METER switch is in the TX SYNTH and RX SYNTH positions.
(d) In the ERROR COUNT position of the METER switch, the meter displays the output of the D/A converter on the digital to analog meter card.
This indication is representative of the error comparator output. The METER switch also provides a ground output to the error comparator in this position.
(7) The error comparator receives data and clock inputs from various sections of the modem as selected by the SOURCE, METER, and TEST switches. The input clock drives a PN sequence generator identical to the one used to stimulate the test circuits. The input sequence is compared with the internally generated sequence and an output pulse is developed each time an input error occurs. The internal PN sequence generator may be synchronized to the input sequence by momentarily placing the MONITOR switch in the MANUAL position. When the MONITOR switch is in the AUTO position, the synchronization circuit is controlled by two counters. The bit counter monitors the input clock and divides the rate by 256. The error counter is preset to a count of 64 at the beginning of each bit counter cycle, and downcounts each time an error is detected. If the error counter downcounts to 0 before the bit counter resets it to 64 on the next
cycle, an output pulse is produced which resynchronizes the PN sequence generator.
(8) The digital to analog meter card produces an output current to the front panel meter based on the average input pulse rate. A clock loss detector circuit disables the input if a loss of clock should occur. An additional circuit monitors the bit and error counters to limit the number of error pulses gated to the D/A converter, and thus limits the meter drive current at high error rates.
c. Test Function. The test function provides for an internally generated pseudo-random data sequence to the ICF modem input circuits. The modem then reconstructs the input sequence. The data signals at various points in the modem are monitored as selected by front panel switch settings to deter- mine whether the proper sequence is present. A functional block diagram of the test circuits is shown in figure FO-3.
(1) The clock for the test function is taken from the test output of the line driver which provides the internally generated stable clock to the digital user (para 2-13). During normal operation, the SOURCE switch is in the OPERATE position and the PN sequence generator is disabled.
(2) When the SOURCE switch is in the LINK position, the PN sequence generator, which generates a 2047 bit sequence at the selected INPUT DATA RATE, is enabled and applied to the input circuits. The digital user inputs to the input circuits are also disabled by the SOURCE switch and the internally generated sequence is applied to the transmit bit synchronizer (para 2-3). As a result, the bipolar NRZ output is the internally generated PN sequence for link testing purposes.
(3) When the SOURCE switch is in the TEST position, the internal PN sequence generator is enabled and the sequence is applied to the transmit bit synchronizer as described above. If the TEST switch is in position 3 at this time, the PN sequence is also applied to the receive bit synchronizer through the NRZ interface card. Placing the SOURCE switch in the TEST position also accomplishes the following:
(a) The TEST switch, which controls the error comparator input in conjunction with the METER switch, is enabled.
(b) The relays on the LOS/cable receiver and decoder card and on the NRZ interface card are energized to disable the LOS/cable inputs and apply a test pattern from the drivers to the receive circuits para 2-3.
(4) The data and clock inputs to the error comparator are selected according to the settings of the SOURCE and TEST switches which control the switching functions of the PN sequence generator
card. When the SOURCE switch is in the OPER- ATE or LINK position, the standard data and clock test outputs are selected. When the SOURCE switch is in the TEST position, the error comparator inputs are selected by the TEST switch.
(a) In position 1, the PN sequence generator outputs are selected.
(b) In position 2, the transmit bit synchronizer outputs are selected.
(c) In position 3, the receive bit synchronizer outputs are selected.
(d) In position 4, the standard data and clock test outputs are selected.
(e) In position 5, the alternate data and clock outputs are selected.
(5) The PN sequence generator card provides an output pulse to the front panel synchronous with the 2047 bit pattern. A sample of the clock applied to the error comparator by the selection network is also provided to the front panel by the PN sequence generator card.
d. 11-Bit PNSequence Generator (Fig.FO-22).
(1) The PN sequence generator receives bit rate clock through gate U5 when P1-6 is high. $\mathrm{P} 1-5$ is connected externally to P1-45. P1-6 is low only when SOURCE switch is in OPERATE position, which disables the sequence generator. In LINK or TEST position, the generator is enabled. The sequence generator consists of two 8-bit shift registers, U7 and U8, the second and eleventh stages of which are exclusive OR'ed at Ull-6, gated with the output of the zero-suppression gate network, U10, U12, and U13, and fed back to the shift register in- put. The zero-suppression circuit prevents the generator from being locked up with all zeros. If all gates receive all ZERO inputs, a ONE is clocked into the register. The resulting sequence has a period of 2047 bits. The output is clocked through flip-flop U9 to pin 11. A negative sync pulse is provided at the front panel SYNC connector by detecting state 11100000000 using NAND gate U14.
(2) The clock and data selectors, U2 and U3, respectively, are controlled by their A, B, and C in- puts from OR gates U1 and U5. Pins 27, 62, 63, and 65 are set low by positions 1, 2, 3, and 5 of the TEST switch, respectively. Clock and data signals are ap- plied to the selectors from various internal test points in the modem. The complement outputs are applied to the error comparator via P1-17 and P1-25. The clock output is also provided to the front panel clock jack. The selected outputs determined by the TEST switch position are as shown in table 2-10
(3) P1-9 and P1-10 are connected externally to allow flip-flop U9 to be used to divide the receive bit sync clock by 2. The flip-flop output is provided to the external decoder (para 2-11b)

Table 2-10. Test Switch Selections

Position	Pin	Data	Pin	Clock
1	P1-59	Sequence generator clock	P1-51	Sequence generator output
2	P1-23	Transmit bit synchronizer clock	Pl-15	Transmit bit synchronizer output
3	Pl-58	Receive bit synchronizer clock	P1-50	Receive bit synchronizer sign bit output
4	P1-24	Standard clock test output via inverter U4 IPI-35)	Pl-16	Standard data test output
5	P1-19	Alternate clock test output via inverter U4 IPI-32)	P1-57	Alternate data test output

e. Error Comparator (fig. EO-23). The error comparator (A2A1A2A8) receives data and clock from the selector circuits on the 11-bit PN sequence generator card (A2A1A2A7).
(1) Shift registers, U1 and U2 along with exclusive OR U8 and gates U9 and U10 make up the PN sequence generator. The eleventh stage of the shift register ($\mathrm{P} 1-6$) is applied to $\mathrm{P} 1-68$ by an external connection. When the METER switch is in the ERROR COUNT Position, flip-flop U12 is preset by a ground on P1-30. Data and clock are applied to pins 32 and 25. In error count operation, U8-5 is high causing the complement data input to be inverted. The input data from U8-6 is compared with sequence generator data at exclusive OR gate U8 and the results applied to flip-flop U11-12. As long as the two data signals are identical, the output is low. If they are not the same, a high is generated which represents an error. The error signal at pin 51 is applied to the digital to analog meter card. The error pulses are also gated with clock, inverted by U7, and applied to the front panel ERROR jack for external counting.
(2) Binary counter U13 and U14 applies a reload input to downcounter U5 and U6 for every 256 clock pulses. A count equivalent to 64 counts is loaded by externally connected grounds on pin 22. The output of the 256 counter at pin 3 is also applied to the D/A meter circuit. When the error signal is high at AND gate U9-13, clock pulses are gated through to downcount U5 and U6. If there are 64 errors within 256 clock pulses, an overflow signal is generated by U6-13. This pulse at pin 23 is applied to the D/A meter card. Manual/automatic resynchronization of the sequence generator is controlled by gates U9 and U10 which are enabled by a low at either pin 50 or pin 52. Pin 50 is low when the MONITOR switch is in the AUTO position. U10-5 is therefore enabled, allowing the overflow pulse, which is externally connected to P1-24, to clear shift register U3 and U4 (P1-14 is externally connected to P1-36). The resultant low at U4-13 causes gates U9 and U 10 to load the input data into shift register U2. After 15 bits of input data have been loaded, U4-13 will go high again, since the shift register input is
connected to a logic ONE, and the error comparator will revert back to normal operation. Placing the MONITOR switch in the MANUAL position places a ground on P152 , which clears U3 and U4. When the switch is released, 15 bits of input data are loaded as described above.
f. Digital to Analog Meter (fig. FO-24), The digital to analog meter circuit (A2AIA2A9) converts the digital error data to an analog signal which is applied to the front panel MONITOR meter. In the condition of no error, pin 45 is low and OR gate U2-6 is high. Diodes CR1 and CR2 are forward biased applying a voltage which back-biases CR3, and no current is applied to the meter from P1-9. An error causes pin 45 to go high. Diode CR2 is back-biased and CR3 and CR4 are forward-biased, causing meter current flow. Capacitor C6 filters the current flow. The resultant meter deflection is proportional to the number of errors. Full scale deflection equals 25% error rate (64 errors in 256 clock pulses).
(1) Limit flip-flop U1 prevents the meter from deflecting beyond full scale. U1 is preset by count 256 at pin 44, placing U1-9 high. When overflow condition occurs (greater than 64 errors in 256 pulses), a positive pulse at pin 7 clocks a low to U1.
The low satisfies OR gate U2. The meter current flow is cut off until the next count 256 pulse.
(2) Clock pulses at pin 12 trigger retriggerable oneshot U3 thus keeping its output high. If clock pulses are lost, the one-shot output returns to a low. The low satisfies OR gate U5, thus cutting off meter current flow.
(3) The selected data and clock at pins 46 and 10, respectively, are applied to inverters and drivers.
The outputs drive the DATA A and B and the CLOCK A and B front panel indicators. Additionally, the operating voltages listed below are applied to the meter via this card:

Voltage	Input Pin	Output Pin
+5 V DC	47	11
$-5 V$ DC	48	49
+15 V DC	15	52
-15 V DC	13	16

Change 1 2-38

g. Alarm Circuits (fig. FO-25), The alarm circuits (A2A1A2A10) monitor the transmit and receive sections of the modem. In the event a fault occurs in the transmit bit synchronizer or the receive bit synchronizer, an alarm signal is generated. When a fault occurs, a high logic level is applied to the inverter of the apporpriate latching circuit. The output from the latching circuit activates a monostable multivibrator which produces a square wave output to the corresponding fault indicator on the front panel. This output causes the normally off indicator to blink on and off at approximately three times per second. In addition to the blinking indication, an audible alarm sounds. When the fault has been remedied, the indicator remains on until the ALARM switch is momentarily switched to the RESET position (the RESET positition also acts as a lamp test for the indicators). The SECTION indicators illuminate when a fault occurs and remain on until reset, but they do not blink.
(1) The alarm circuits card contains six alarm detectors (only two are used). One detector, made up of inverter U3-4, latch U9-3 and 11, AND gate U10-3, OR gate U10-II, and indicator driver U5-8, is discussed. The RESET signal sets all latches to test the front panel indicators. The low at U10-12 satisfies OR gate U10, thus keeping the indicator off when the RESET is released. When the associated fault occurs, pin 31 goes
low. The low sets U9-3 low and U9-11 high. The low input from pin 31, inverted by U3, also enables AND gate U10-2. U10-1 receives a square wave signal from the flasher circuit. When the flasher input is high, U10-3 is low, flashing the indicator off. When the flasher input is low, U10-3 is high and the indicator is on. The low at U64 causes a low at pin 22, thus turning the RECEIVE section fault indicator on. The high at U6-6 activates alarm relay driver U1 and relay K1 energizes, causing the audible alarm to sound. If the low (fault) input should go high, the circuit will remain latched, but the low at U10-2 will disable the flasher input, keeping the indicator in the steady-on condition.
(2) The low at U7-3 also activates the flasher square wave generator, U11, U12 and associated circuitry. One-shot, U11, is initially triggered by this low. U11's Q output goes low, then returns high at the end of the oneshot operation. The return to high triggers one-shot U12. The Q output of U12, in turn, retriggers U11. This operation continues as long as the low at U11-1 or -2 remains. The square wave output from U11-8 is applied to AND gate U10-1 and the other fault circuits. The other alarm detect circuits operate the same although the circuits associated with P1-32, and P1-63 are activated by a high input.

CHAPTER 3

DIRECT SUPPORT MAINTENANCE INSTRUCTIONS

Section I. GENERAL

3-1. \quad Scope of Direct Support Maintenance

This chapter contains detailed maintenance instructions to perform direct support maintenance on the ICF modem. Direct support maintenance includes all operator and organizational maintenance, plus troubleshooting, test, and replacement operations. A performance test is included to verify operability of the modem following repair (Dara 3-10). Do not go beyond the instructions given in this chapter.

3-2. DS Tools and Test Equipment

The equipment required for testing, troubleshooting, and repairing the ICF modem is listed below:
a. Oscilloscope, Tektronix 485A.
b. Digital Voltmeter, Fluke 8000A-01.
c. Tool Kit, Electronic Equipment TK-105/G.
d. Card Extenders, SM-D-759649 (2).
e. Card Puller, Protolab \#7920.
f. Multimeter, VOM, Simpson 270.
g. Electronic Counter, HP 5245L with HP 5253 plug-in.
h. Oscilloscope Probe (X10), Tektronix 6054A (2). (Must use with TEK 485A.)

Section II. DIRECT SUPPORT TROUBLESHOOTING

3-3. General

Direct support maintenance personnel will, as required, perform the self-test procedures in this section to localize a fault. This procedures localizes a fault to several printed circuit cards or plug-in subassemblies. Direct support corrective action consists of interchanging those cards or subassemblies indicated to have possible faults with items known to be good. The items are interchanged one at a time in the order listed in each referenced corrective action table until the fault is corrected.

3-4. Troubleshooting Procedure

a. Perform the self-test procedure in accordance with paragraph 3-5. The self-test procedure defines a series of operations with corresponding requirements for resultant indications. If at any point in the self- test procedure the expected indication fails to occur, the appropriate corrective action is referenced.
b. Perform the corrective action in accordance with the portion oparagraph 3-6 that is referenced in the selftest procedure. When the corrective action appears to have corrected the fault indication, confirm operability be repeating the entire self-test procedure. If the corrective actions given in paragraph 3-6 fail to correct the faulty indication, refer to paragraph 3-7 to localize faults in the components which are not plug-in replaceable.

NOTE

Before any lengthy continuity tests are performed, the modem should be returned to its original condition and the troubleshooting procedure be repeated to be sure that malfunction
indication did not result from operator error.

CAUTION
The modem covers must be in place for proper air flow to insure equipment cooling. If any maintenance operations require removal of cover(s) for extended periods (30 minutes or more), an external fan must be set up with air flow directly into the power supply area. Failure to observe this precaution will result in equipment damage.
c. After successful conclusion of self-test procedures following a corrective action, the modem may be returned to service immediately if required. To return the modem to service, refer to TM 11-5820-804-12 for the appropriate procedures. If operational requirements permit, perform the test in paragraph 3-10 to be sure the modem is operating within specification.

3-5. Self-Test Procedure

Refer to TM 11-5820-804-12 to determine the normal operational switch settings.

CAUTION

Performing self-test on a modem while the system is operating interrupts digital user communications on both the transmit and receive links.
a. Check to see that modem outputs to the data patch panel are properly terminated.
switches as shown in table 3-1, set the POWER switch to ON, and allow 30 minutes for warmup.
b. If modem is nonoperating, set the front panel

Table 3-1. Self-Test Initial Switch Settings

Control section	Switch
FAULT	ALARM
TRANSMIT	INPUT DATA RATE
	ERROR CODING
	SOURCE
MONITOR	TEST
	METER
RECEIVE	MANUAL/OFF/AUTO
	SYMBOL RATE
	ERROR CODING
	ON/OFF
	Sehind upper front panel

c. If modem is in operation, initiate the test by changing the modem switch settings as required to correspond to table 3-1
d. Connect the electronic counter to the modem front panel ERROR jack.
e. Perform the self-test in accordance with table 32 and the following instructions:
(1) In the sequence shown on the table, set each front panel switch indicated in the first column to the

Position
OFF
Same as operational INPUT DATA
RATE
NONE
TEST
1
AUTO
Same as operational INPUT DATA RATE

NONE
ON
Same as operational setting
ON
ON
corresponding setting (s) indicated in the second column.
(2) For each switch setting, observe the indicator (s) listed in the third column, and verify the results required by the fourth column.
f. If operational INPUT DATA RATE is not the same as operational SYMBOL RATE, set both switch groups to the operational SYMBOL RATE and repeat procedures of table 3-2

| Control section) | | | |
| :---: | :---: | :---: | :---: | :---: |
| switch | Table 3-2. Self-Test Procedure | Corrective
 action | |
| (FAULT) ALARM | Setting | Indicator | Normal |
| Indication | | | |

Change 1 3-2
g. Set the DIFF ENCODE or DIFF DECODE switch to ON, and verify that MONITOR meter indicates 0 and that DATA and CLOCK indicators are illuminated. (For corrective action, refer totable 3-16.).
h. If both ERROR CODING switches are operationally set to NONE omit procedures of table 3-3.
i. If the RECEIVE ERROR CODING switch is operationally set to EXTERNAL, set both ERROR CODING switches to that position, set SYMBOL

RATE switches to operational positions, and set INPUT DATA RATE switches to one-half the operational SYMBOL RATE. Then perform the coder test in accordance with table 3-3
j. If the TRANSMIT ERROR CODING switch is operationally set to EXTERNAL, set both ERROR CODING switches to that position, set INPUT DATA RATE switches to operational positions, and set SYMBOL RATE switches to twice the INPUT DATA RATE. Then perform (or repeat) the coder test in accordance with table 3-3

Table 3-3. Coder/Decoder Test Procedure

(Control section) switch	Setting	Indicator	Normal Indication	Corrective action
(MONITOR) TEST	5			
(MONITOR) METER	ERROR COUNT	Meter and electronic counter	0	Table 3-17
		ALL MONITOR indicators	Illuminated	Table 3-17
FAULT ALARM	RESET (monentary)	AI,L FAULT indicators	Extinguished	Table 3-17

3-6. Corrective Action

The follwoing corrective action procedure provides a means of isolating a failed subassembly and repairing the modem. Tables 3-4 through 3-17 contain the fault isolation procedures to be sued in the event of a self-test failure. Table 3-18 lists the alinement or adjustment procedures required after replacement of certain subassemblies.
a. Perform any additional observations or tests required by the table and use this information to select the required corrective actions.
b. Perform the corrective actions in the sequence given, and monitor the unit to determine whether the corrective action clears the fault. For example, if the corrective action column lists several potentially faulty PC cards, replace the first card listed. If the fault indication status of the modem remains unchanged, return the original card to the modem, and then replace the second card on the list. Continue in this sequence until the fault is cleared.

Table 3-4. Fault Isolation Procedure, (POWER Indicator)

Symptom	Corrective action
POWER indicator extinguished	1.1If the fuse indicator is illuminated, perform procedures below If extinguished. proceed to step 2
	a Set POWER switch to off
b. Disconnect connector A2PI from power supply	
	c. Replace A1FO1.
d. Set POWER switch to ON and verify fuse indicator is Fuse	
extinguished.	

Table 3-4. Fault Isolation Procedure (POWER Indicator)-Continued

Symptom

One or more FAULT indicators extinguished

No audible alarm
Audible alarm Symptom TEMPERATURE indicator on

Corrective action
Notes
e. Set POWER switch to off and reconnect A2P1 to power supply.
f. Set POWER switch to ON and verify fuse indicator if extinguished. If the fuse indicator again illuminates, replace power supply A2PSI* and AIFO1.
2. If other front panel indicators are illuminated, replace indicator A1DS11.
3 Check ac line cord and POWER ON/off switch and repair or replace if required.

Table 3-5. Fault Isolation Procedure (ALARM RESET)

Corrective action Notes

1. If no FAULT indicators are illuminated proceed to step 2.

If other indicators are illuminated, perform a and b. below.
a. Replace faulty indicator bulb.
b. Replace A2A1A2A10.
2. Operate METER switch to +5 V position. If meter reading is less than 46 replace A2PS1*.
3. Check ALARM switch, A1S1, and replace if required. Replace:
a. A2AIA2A10
b. AIDS1

Table 3-6. Fault Isolation Procedure (ALARM OFF) Replace:
a. A2AIA2A10
b. A2S1

Corrective action

Table 3-7. Fault Isolation Procedure (Power Supply)
Symptom
Meter indication out of limits

Symptom
Meter indication not within limits (40 to 60)

Corrective action
Replace'
a. A2PS1*
b. A2AIA2A9
c. A1M1

Table 3-8. Fault Isolation Procedure (XMIT SYNTH)

Replace :
Corrective action
a. A2A1A1A6*
b. A2AIA1A3*
c. A2AIAIAA
d. A2A1AIA2
e. A2A1A1A5
f. A2A1A1A8*
g. A1A1

Notes
Alarm circuits (SM-D-7420331
Thermostat
Alarm circuits (SM-D-742033)
Power supply
RESET position
Alarm circuits (SM-D-742033)
Audible alarm

Notes
Power supply (SM-C-742003)
D/A meter (SM-D-7420651
Meter

Notes
Wait approximately 15 seconds for proper indication after each replacement.
45 MHz PLL (SM-D-742113)
Reference oscillator (SM-D742129)

Counter encoder (SM-D742105)

Prog. divider (SM-D-742109)
Reference divider (SM-D742133)

45 MHz amp (SM-D-742117)
INPUT DATA RATE switches

Symptom
Meter indication not within limits (40 to 60)

Symptom
Clock A or B extinguished

DATA A or B extinguished

Meter indication other than 0

Symptom
CLOCK A or B extinguished

DATA A or B extinguished

Meter indication other than 0

Table 3-9. Fault Isolation Procedure (RCV SYNTH)

Corrective action
Replace
a. $\mathrm{A} 2 \mathrm{~A} 1 \mathrm{~A} 2 \mathrm{~A} 18^{*}$
b. A2A1A2A21*
c. A2A1A2A24
d. A2A1A2A23
e. A2A1A2A20
f. A2A1A2A16*
g. A1A2

Table 3-10. Fault Isolation Procedure (TEST 1)
Corrective action
Notes
Replace:
a. A2A1AIA12*
b. A2A1A1A3*
c. A 2 A 1 A 1 A 14
d. A2AIA1A21**
e. A2A1A2A7
f. A2A1A2A9
g. CLOCK A or B indicator

Replace:
a. A2A1A2A7
b. A2A1A2A9
c. DATA A or B indicator

Replace:
a. A2A1A2A7
b. A2A1A2A8
c. A2A1A2A9
d. A2A1A2A4**

Table 3-11. Fault Isolation Procedure (TEST 2)

Replace:
a. $\mathrm{A} 2 \mathrm{~A} 1 \mathrm{~A} 1 \mathrm{~A} 3^{*}$
b. A 2 A 1 A 1 A 5
c. $\mathrm{A} 2 \mathrm{~A} 1 \mathrm{~A} 1 \mathrm{~A} 10^{*}$
d. A2A1A1All
e. A 2 A 1 A 1 A 17
f. A2Y2*

Replace:
a. $\mathrm{A} 2 \mathrm{~A} 1 \mathrm{~A} 2 \mathrm{~A} 4^{* *}$
b. A2A1A1A17

1. Replace:

> a. A2A1A1A15
> b. A2A1A1A16
> c. A2A1AIA17
2. Replace cards listed above for CLOCK A or B extinguished symptom.

Notes
Wait approximately 15 seconds for proper indication after each replacement
45 MHz PLL (SM-D-742113)
Reference oscillator (SM-D742129)

Counter encoder (SM-D742105)

Prog. divider ISM-D-742109)
Reference divider (SM-D742133)

45 MHz amp (SM-D-742117)
SYMBOL RATE switches

Stable clock iSM-D-731201)
Reference oscillator (SM-D742129)

Reference divider (SM-D742133)

Line driver (SM-D-742053)
PN sequence generator (SM-D742057)

D/A meter (SM-D-742065)

PN sequence generator (SM-D742057)

D/A meter \{SM-D-742065)

PN sequence generator ISM-D742057)

Error comparator (SM-D742061)

D/A meter (SM-D-742065)
Input interface (SM-D-742037)

Notes

Reference oscillator \{SM-D7421291
Reference divider (SM-D742133)

Mixer/output amp (SM-D742125)

15 MHz amp (SM-D-742121)
Transmit bit detector (SM-D742045)

VCO (SM-A-731369-1)
Input interface (SM-D-742037)
Transmit bit detector (SM-D742045)

D/A converter (SM-D-731217)
Loop filter (SM-D-731221)
Transmit bit detector (SM-D742045)

Change 1 3-5

Table 3-12. Fault Isolation Procedure (TEST 3)

Symptom
CLOCK A or B extinguished

DATA A or B extinguished
742045)

Meter indication other than 0

Replace:
d. A2A1A2AII
f. A2Y1*

Replace:
d. A2A1A2A2

1. Replace:

Symptom
CLOCK A or B extinguished, Data A or B extinguished, or meter indication other than 0.
a. A2AIA2A15*
b. A2A1A2A14
c. A2AIA2A20
e. A2A1A2A21*
a. A2A1A2A5
b. A2A1A2A6
c. A2A1A2All
a. A2A1A2A13
b. A2A1A2A12
c. A2A1A2A14
2. Replace cards listed above for CLOCK

A or B extinguished symptom
3. Replace A2Y1*

Table 3-13. Fault Isolation Procedure (TEST 4)

Corrective action
Replace:
a. A2A1A2A3
b. A2AIA2A1
c. A2A1A2A4**
d. A2A1A2A23**
e. A2A1A2A6
f. A2A1A2A2

Corrective action
Mixer/output amp
(SM-D-742125)
15 MHz amp (SM-D-742121)
Reference divider (SM-D-742133)
Transmit bit detector (SM-D-
Reference oscillator (SM-D-742129)
VCO (SM-A-731369-1)
Coder interface (SM-D-742049)
Coder switch (SM-D-742041)
Transmit bit detector (SM-D-
NRZ interface (SM-D-877791)
D/A converter (SM-D-731217)
Loop filter (SM-D-731221)
15 MHz amp (SM-D-742121)

VCO (SM-A-731369-1)

Table 3-14. Fault Isolation Procedure (TEST 5)

Corrective action
Replace A2A1AIA22**

Notes
Alternate line driver (SM-D-742053)

DATA A or B or CLOCK A or B

Table 3-15. Fault Isolation Procedure (DIFF (Momentary RESET))

Symptom
Any FAULT indicator illuminated or blinking
TRANSMIT BIT SYNC illuminated or blinking
RECEIVE BIT SYNC illuminated or blinking

Corrective action
Replace A2AIA2A10
Replace A2A1A1A17
Replace A2A1A2All

Alarm circuits (SM-D-742033)
Transmit bit detector (SM -D-742045)
Transmit bit detector (SM -D-742045)

Table 3-16. Fault Isolation Procedure (DIFF ENCODE/DECODE)

$\substack{\text { Symptom } \\ \text { Any improper indication }}$	Replace A2A1A2A6	Corrective action

Change 1 3-6

Table 3-17. Fault Isolation Procedure (Coder/Decoder Test D
Symptom
Any improper indication
(external error coding)
Replace:
a. A2A1A2A5** Coder interface (SM-D-742049)
b. A2A1A2A6

Coder switch (SM-D-742041)
Table 3-18. Alinement and Adjustment Following Repair Action

```
Subassembly
A2AIA2A1 (I,OS/cable receiver and decoder
A2AI1AI A3 and A2A1A2A21 (Reference oscillator)
A2AIAIA6 and A2AIA2A18 (45 MHz PLL)
A2AIAIA8 and A2A1A2A16 (45 MHz amplifier)
A2AIAIA10 and A2A1A2A15 (Mixer/output amplifier)
A2AIAIA12 (stable clock)
A2PS1 (Power supply)
A2YI (Oscillator)
A2Y2 (Oscillator)
```


3-7. Chassis and Card File Fault Isolation

a. General. This paragraph contains the fault isolation information for ICF Modem components that are not plug-in replaceable.
b. Card Files. If the fault is not corrected by the substitution method of troubleshooting, continutiy checks between connectors must be made. Refer to

Alinement adjustment requirements
Perform the LOS/cable receiver alinement in accordance with paragraph 2-18. TM 11-5820-804-12.
Perform the frequency synthesizer alinement (para 3-8 c).
Perform the frequency synthesizer alinement (para 3-8 c).
Perform the frequency synthesizer alinement(para 3-8 c).
Perform the frequency synthesizer alinement (para 3-8 c).
Perform the frequency synthesizer alinement(para 3-8 c).
Perform the power supply adjustment in accordance with paragraph 5-9, TM 11-5820-804-12.
Perform the oscillator adjustment para 3-8 b I.
Same as A2Y1.
table B-1 and perform continuity tests in the suspect area.
c. Chassis Wiring. Continuity tests are made between external connectors and points in the modem or between internal points within the modem. Refer to figure FO-26. Table 3-19 gives a list and description of the connectors.

Table 3-19. ICF Modem Connectors
\quad Designation
A1J1
A1A2
A1IJ3
A2J4
A2J5
A2J6
A2E2
A2E5
AIPI A2PSIJI
AIA2POI A2AIA1J3
AIP02 A2A1AIJ2

A1PO3/A2A1A1J1
A1A1PO1/A2A1A2J1
A2W09-1/A2A1W1-1
A2W9-2/A2E5-B
A2W 11P1/ A2A1J2
A2WV 11 P2 A2Y1J1
A2W11 P3/A2Y2J1

Type

External
External
External
External
External
External
External
External
Internal
Internal Internal

Internal
Internal
Internal
Internal
Internal
Internal
Internal

Description

Error test point
Sync test point
Clock test point
Ac power to the rack
Digital user interface with modem
Coder decoder Interface with modem
Static ground
Single point ground
Ac power
Switch assembly to cardfile
Lights and switches from motherboard to front panel
Switches and test jacks from motherboard to front panel
Switch assembly to cardfile
Ground return
Ground return
Oscillator cable
Oscillator cable
Oscillator cable

Section III. DIRECT SUPPORT ALINEMENT AND REPAIR

3-8. Adjustment and Alinement Procedure

a. General. The procedures required to adjust the oscillators and frequency synthesizer to obtain optimum performance are contained in this paragraph. Refer to

TM 11-5820-804-12 to determine the normal operational switch settings
b. Oscillator Adjustment Procedure. An oscilloscope, card extender, and card puller are required for oscillator adjustment.

NOTE
Oscillator circuits A2Y1 and A2Y2 are contained in internal ovens. The required oven stabilization time is 30 minutes prior to adjustment.
(1) Set the ICF modem front panel controls as shown in table 3-20
(2) Set the POWER switch to the off position and disconnect both oscillators from the mounting

Table 3-20. Initial Control Settings for Oscillator Adjustments
\quad Control
ALARM
TRANSMIT SOURCE
TRANSMIT ERROR CODING
INPUT DATA RATE
DIFF ENCODE
DIFF DECODE
SYMBOL RATE
RECEIVE ERROR CODING
(4) Set the POWER switch to ON position. Connect oscilloscope to observe the signal on pin 21 of the extended card and adjust the oscillator to produce a waveform centered at 0 volt.
(5) Set POWER switch to off, remove card extender, and replace extended card.
c. Frequency Synthesizer Alinement. A frequency counter, an oscilloscope, two card ex- tenders, and a card puller are required to aline the frequency synthesizer.

NOTE

The following procedures are used to aline either the transmit or the receive frequency synthesizer. The receive frequency synthesizer reference designators are shown in parenthesis. If any adjustment fails to result in the specified indication,
and retaining brackets to provide access to the appropriate adjustment (access opening is located on the oscillator surface oppostie the connector).
(3) If A2Y2 is to be adjusted, remove card A2A1A1A11, insert the card extender in the card slot, and insert A2A1A1A11 into the card extender. If A2Y1 is to be adjusted, place A2A1A2A14 on the extender card.

$$
\begin{aligned}
& \text { Position } \\
& \text { OFF } \\
& \text { TEST } \\
& \text { NONE } \\
& \text { Same as operational SYMBOL RATE switch settings } \\
& \text { ON } \\
& \text { ON } \\
& \text { Same as operational SYMBOL RATE switch settings } \\
& \text { NONE }
\end{aligned}
$$

> the probable cause is failure of the card being adjusted. If the measurement is taken from a card other than that which is adjusted, the next most probable cause is failure of the card from which the measurement is taken.
(1) Set front panel SOURCE switch to TEST and, with power removed, place reference oscillator card A2A1A1A3 (A2A1A2A21) on a card extender. Also place 45 MHz amplifier card A2A1A1A8 (A2A1A2A16) on an extender card. Apply power and connect frequency counter to monitor output pin 21 on reference oscillator. As required, adjust 15 MHz TCXO Y 1 on reference oscillator fig. 3-1 for a frequency counter indication of $15 \mathrm{MHz}+2 \mathrm{~Hz}$.

Figure 3-1. Reference oscillator adjustment location.
(2) Set front panel INPUT DATA RATE (SYMBOL RATE) thumbwheel switches to $9.9999 \mathrm{MB} / \mathrm{S}$. Connect oscilloscope to monitor amplitude at pin 22 of 45 MHz amplifier card. Continue to monitor amplitude at pin 22 and set INPUT DATA RATE ISYMBOL RATE) thumbwheel switches to $56.0000 \mathrm{MB} / \mathrm{S}$.
(3) Amplitude at pin 22 should be $2,0: 0,1$ volts p.p. As required, adjust R24(fig. 3-2) to obtain best indication (as close to 2.0 volts $p-p$ as possible) at both rates ($9,9999 \mathrm{MB} / \mathrm{S}$ and $5.0000 \mathrm{MB} / \mathrm{S}$)

45 MHz AMPLIFIER A2A1A1A8 (A2A1A2A16) (SM-D-742117)

EL 5820~804-34-TM-51

Figure 3-2. 45 MHz amplifier adjustment location.
(4) Set front panel thumbwheel switches to 9.9999 MB / S. Connect oscilloscope to monitor signal amplitude at pin 1 of circuit U1 (fig. 3-1)]on the reference oscillator card. Continue to monitor amplitude at U1-1 and set thumbwheel switches to $5.0000 \mathrm{MB} / \mathrm{S}$.
(5) Amplitude at UI-1 should be $0.5-0.005$ volt p-p at both rates of (4) above. If amplitude is not as specified, remove power and remove 45 MHz amplifier from the
extender. Return 45 MHz amplifier to its proper position in the file and place mixer/output amplifier A2A1A1A10 (A2AIA2A15) on the extender. Apply power and, as required, adjust R33 (fig. 3-3) on the mixer/output amplifier to obtain best indication (as close to 0.5 volt p-p as possible) at both rates ($9.9999 \mathrm{MB} / \mathrm{S}$ and 5.0000 MB/S).

Figure 3-3. Mixer output amplifier adjustment location
(6) Remove power and remove card extender (s). Return circuit card is) to their proper positions in the file. Place 45 MHz phase lock loop card A2A1A1A6 (A2A1A2A18) on an extender. If alining the transmit synthesizer, place stable clock card A2AIA1A12 on an extender. Apply power.
(7) Set thumbwheel switches to $7.5000 \mathrm{MB} / \mathrm{S}$. Connect oscilloscope to pin 4 of oscillator U1 fig. 3- 4) on the 45 MHz phase lock loop card. As required, adjust oscillator Y1 so that with the loop locked the oscilloscope indication is $0+0.1$ volt.

Figure 3-4. 45 MHz phase lock loop adjustment locations
(8) On front panel MONITOR section, set METER switch to XMT SYNTH (RCV SYNTH). On 45 MHz phase lock loop card, adjust R12 to ,obtain a front panel meter indication of $50+2$.
(9) If alining the transmit synthesizer, connect oscilloscope to monitor amplitude at pin 9 of U2 (fig. 3-5)
on stable clock card A2A1A1A12. As required, adjust R37 on this card to obtain an oscilloscope indication of $0.5-0.05$ volt $p-\mathrm{p}$. If adjustment is necessary, repeat (7) and (8) above after completing this adjustment.

Figure 3-5. Stable clock adjustment location.
(10) Remove power and remove card extenders. Return 45 MHz phase lock loop card (and stable clock card if previously extended) to proper position in card file. Place 16 MHz amplifier A2A1A1A11 (A2A1A2A14) on an extender. Apply power.
(11) Connect oscilloscope to monitor amplitude at pin 21 of the 15 MHz amplifier and adjust A2Y2 (A2Y1) as required to obtain an oscilloscope indication of 0 : K0.06 volt.
(12) Remove card extender and return 15 MHz amplifier to its proper position in the card file.
(13) If completing alinement of the transmit synthesizer, connect frequency counter to monitor output of front panel CLOCK connector. Set TEST switch to position 1 and exercise INPUT DATA RATE switches through each position and verify counter indicates selected frequency ± 1 least significant digit.
(14) If completing alinement of the receive synthesizer, connect frequency counter to monitor output of front panel CLOCK connector. Set TEST switch to
position 3 and exercise SYMBOL RATE switches through each position and verify counter indicates selected frequency ± 1 least significant digit.

3-9. Removal and Replacement Procedures

a. General. Removal and replacement of most subassemblies is obvious by inspection. However, the power supply has much attaching hardware and the following procedures will aid in its removal and replacement.
b. Power Supply.
(1) With modem top cover removed, disconnect the ac power cable PS1J1 and the dc connector to the top file. Remove four Phillip's-head screws (A,fig. 3-6). With modem bottom cover removed, remove two lower Phillip's-head screws from each side near bottom of the omdem (B fig. 3-6). Extract power supply with attached mounting brackets from bottom of modem.

Figure 3-6. Power supply removal and replacement.
(2) If replacing the supply, remove the power supply mounting brackets and install brackets on replacement supply (replacement supplies are not provided with mounting brackets.
(3) To reinstall the supply. reverse the procedures of (1) above. Leave screws untightened and ensure that the mounting brackets are flush with
the bottom sides of the modem; then tighten screws.

3-10. Performance Testing

Performance verification of the ICF modem is accomplished through restoring the ICF modem to its operational configuration and performance of link test. Refer to TM 11-5820-804-12.

GENERAL SUPPORT MAINTENANCE INSTRUCTIONS (OR SELECTED REPAIR ACTIVITY (SRA))

4-1. Scope of General Support Maintenance and Selected Repair Activity (SRA) Maintenance

General support maintenance and selected repair activity (SRA) consists of testing, adjusting, and repairing all repairable assemblies of the ICF modem. Procedures for ICF modem, subassembly (card) tests, adjustment, and repair are provided in DMWR 11-5820-804.

4-2 . Tools and Test Equipment

GS and SRA tools and test equipment are listed below.
a AC Voltmeter, HP 400F.
b AttenuatorFixture SM-D-877511 (2 required).
c Automatic Test System, GR-1792.
d Autotransformer, Variac W50M.
e Digital Voltmeter, Fluke 8000A-01.
f Electronic Counter, HP 5245L with HP 5253 (2 required).
g Error Rate Counter TS-3641/G (Harris 7002).
h Function Generator, Wavetek 142.
i Multimeter, Simpson 270.
j Oscilloscope, Tektronix 485A.
k Oscilloscope Probe, X10; Tektronix P6054A (2 required).
1 Power Meter, Millivac MV 828B.
m Power Supply Test Set, ICF modem, SM- C742003.
n Precision Power Supply, Power Design 4010.
o Pulse Generator, Datapulse 11OB (2 required).
p Resistor Decade Box, General Radio GR 1434M.
q Signal Generator, HP 606B.
r Signal Generator, HP 608F.
s Spectrum Analyzer, HP 141T with Plug-Ins HP 8552B and HP 8553B.
t Sweep Generator, HP 8601A.
u Synchronizer, HP 8708A.
v Termination: 50 -ohm feed-thru, Tektronix 011-0049-01 (2 required).
w Termination: 50 -ohm, Amphenol 35725-51 (2 required).
x Test Set, ACDC Co. Model 66-991-000.
y Card Extender SM-D-759649 (2 required).
z Card Test Fixtures (Harris T-14301 thru T-
14306):
(1) SM-D-868407.
(2) SM-D-868408.
(3) SM-D-868410.
(4) SM-D-868412.
(5) SM-D-868414.
(6) SM-D-868416.
aa Card Puller, Protolab 7920.
ab Digital Card Test Adapter, SM-D-868405 (Harris T14146).
ac Interface Test Unit, SM-D-877812 (Harris T-14397).
ad Pin Crimp Tool and Turret, MS22520-1-01 and MS22520-1-02.
ae Pin extraction tools:
af MS24256R16.
(1) MS24256R20.
(2) Teradyne 600-0027-000.
(3) Burndy RX 20-25.
ag Pin insertion tools:
(1) MS24256A16.
(2) MS24256A20.
ah Power Supply Fixture SM-D-868418.
ai Tool Kit, Electronic Equipment TK-105/G.
aj Power Supply/Oscillator Test Fixture,
SM-D-882197.
ak Resistors, 2 watts: 36,50 , and 75 ohms.

Change 1. 4-1

ICF MODEM POWER SUPPLY DESCRIPTION

 AND MAINTENANCE INSTRUCTIONS
Section I. GENERAL DESCRIPTION

5-1. Scope

This chapter contains descriptive information and maintenance procedures for power supply PS1, which provides all the dc power requirements for the ICF modem. This section describes the physical and electrical characteristics and identifies the constituent subassemblies of the power supply. Section Il gives a detailed explanation of circuit operation. Direct support troubleshooting and maintenance instructions are provided insection III.

5-2. Physical Characteristics

The power supply (fig. 5-1) is physically comprised of a metal chassis that contains most of the electronics, and three heat-sink assemblies that are attached
to one side of the metal chassis. The dimensions of the metal chassis are $8 \times 15 \times 2.5$ inches, and the complete assembly, including the heat sinks, weighs 16 pounds. Input power to the supply is furnished through an external cable that connects to chassis-mounted jack J1 fig. 5-2). Outputs from the power supply are routed through a single cable, approximately 20 inches long, and terminated in plug P1. The output plug connects to jack A2A1J1 located on the side of the ICF modem card file. External test points are provided on the power supply for monitoring the dc outputs, and access ports are available to allow screwdriver adjustment of individual out-put voltages. The 10 major subassemblies (fig. $5+1$ and 5-2) of the power supply are listed below with their associated reference designators. Figure 5-1. Power supply PS1, external view.

Figure 5-1. Power supply PS1, external view.

Change 1 5-1

Figure 5-2. Power supply, top view with top cover open.
a. Transformer assembly, AI.
b. Printed circuit board, A2 (voltage regulator).
c. Circuit card assembly, A3 (starter circuit).
d. Component board assembly number 1, A4.
e. Component board assembly number 2, A5.
f. Heat sink assembly number 1, A6.
g. Heat sink assembly number 2, A7.
h. Heat sink assembly number 3, A8.
i. Terminal board assembly, A9 (filter capacitors).
j. SCR assembly, A10 (SCR overvoltage crow-bars).

5-3. Electrical Characteristics

The power supply converts input line power to the regulated dc operating levels required by the ICF modem. The dc output levels are $+5,-5,+15$, and -15 volts dc. The power supply is forced-air cooled and features overload and short-circuit protection circuitry. Refer to table 5-1 for a tabulation of performance characteristics.

Table 5-1. Performance Characteristics
Parameter Characteristic
Ac input 120 volts ae $+10 \%, 45$ to 420
Hz , single phase.
De outputs +15 volts de at 7 amps .
-15 volts de at 5 amps .
+5 volts de at 21 amps .
-5 volts de at 5 amps .
Output regulation:
Line and load Less than $\pm 0.1 \%$ for line input variation from 108 to 132 volts ac and loads of 10% to 90\%.
Ripple and noise 10 mV rms.; 1.0 volt peak-to-peak.
Overvoltage trip:
+5 and -5 volts de outputs 6 to 7 volts de. +15 and -15 volts de outputs 17 to 18 volts de.
Current limit:

+5 volts de output	24 to 26 amps.
-5 volts de output	5.8 to 6.3 amps.
+15 volts de output	8.0 to 8.8 amps.
-15 volts de output	5.8 to 6.3 amps

Section II. FUNCTIONAL DESCRIPTION

5-4. General

This section describes the operation of power sup-ply circuits. A functional block diagram description is followed by a detailed discussion of each functional circuit in the power supply.

5-5. Block Diagram Description

a. The power supply functionally consists of an input transient suppressor, a bridge rectifier and capacitor filter, two dc-to-dc converters, and four output voltage regulators (fig. 5-3). The ac input to the power supply is routed through a transient suppressor, which absorbs short-duration transients on the input line. The output of the transient suppressor is then rectified and filtered to produce a voltage level containing ripple at twice the frequency of the input source. This voltage level is fed to two dc-to-dc converters where it is chopped to produce a square wave that is subsequently rectified and filtered to generate true dc levels. Each dc-to-dc converter drives two series regulators that provide the plus and minus dc outputs required by the modem. The voltage regulators maintain constant output levels regardless of fluctuations in source voltage, output loading, and temperature.
b. Included in the power supply is a starter circuit that has no affect on power supply operation. This starter circuit is used in the initial checkout of the power supply by the manufacturer, and is by-passed by the addition of a jumper prior to final test and shipment.
perform full wave rectification of the ac input without using an input isolation transformer, and the dc output from the capacitor filter does not have one side tied to chassis ground. Therefore, large potentials do exist between the floating ground and chassis ground.

5-6. Circuit Description

a. Transient Suppressor. The transient suppresser (fig. FO-28), which includes two filters, absorbs short duration transients that might otherwise damage circuits in the power supply. Back-to-back Zener diodes (CR1) absorb the energy of high-amplitude low-frequency transients, so that they are not passed on to power supply input circuits. The filters, consisting collectively of $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, and C 4 , serve primarily to prevent high frequency switching transients, generated within the power supply, from being reflected back into the in-put line and into other equipment. The filters also prevent electromagnetic energy on the input line from being fed into the load circuits through the power supply.
b. Bridge Rectifier and Capacitor Filter. Diodes CR2, CR3, CR4, and CR5 form a full-wave bridge rectifier for the ac input (fig. FO-28). Capacitors C5, C , and C7 provide filtering to remove or smooth out the remaining ac component in the output of the bridge rectifier. The filtered output is applied directly to the dc-to-dc converters through a jumper that bypasses the starter circuit (oscillator), which is used only for factory testing of the power supply.

WARNING

The bridge rectifier and capacitor filter

Figure 5-3. Dc power supply block diagram.

c. Dc-to-Dc Converter

(1) General. The dc-to-dc converters (fig. 54) transform the dc voltage derived from the input line power to specific dc levels required by the individual voltage regulators. The two-dc-to-dc converters accept the output of the bridge rectifier and capacitor filter circuit, generate a square wave signal, and then rectify and filter this signal to produce a dc level that is fed to the output voltage regulator circuits. One dc-to-dc converter is associated with the 5 and +5 volts dc power supply outputs, and the other is associated with the 15 and +15 volts dc outputs. The operation of both dc-todc converters is identical; therefore, only one is described.
(2) Inverter components. A dc-to-dc converter functionally consists of an inverter, two full-wave rectifiers, and an output filter. The inverter is a push-pull switching inverter that provides two square wave outputs and is comprised of two power transistors (Q4 and Q5) and two transformers (T1A and TIB) containing a core material that has a rectangular hysteresis loop characteristic. Transistors Q4 and Q5 function as multivibrator type switches and are controlled by feedback current coupled to their bases from the composite action of the two saturating transformers.
(3) Inverter switching. Switching action starts in the inverter because of a small inherent imbalance in the circuit that causes one of the transistors, for example Q4, to start conducting before the other. The resulting voltage induced in the secondary winding (29 and 30) of transformer T1A is applied to the primary of base-drive transformer T1B that is in series with feedback resistor R164. The secondary windings of TIB are connected so that transistor Q5 is reverse-biased and held at cutoff, while Q4 is driven to saturation. As transformer T1B saturates, the rapidly increasing primary current causes a greater voltage drop across feedback resistor R164. This increased voltage drop across R164 reduces the voltage applied to the primary of T1B, thus reducing the base drive input in Q4, which in turn decreases the collector current as Q4 eventually reaches cutoff. The curtailing of the collector current of Q4 causes the field of TIA to collapse, thereby reversing the polarity across the windings of transformers T1A and T1B. Transistor Q4 is then held at cutoff, while Q 5 is rapidly driven to saturation. The transistors operate in this condition until transformer TIB saturates, and the circuit then returns to the initial state and the cycle is repeated.
(4) Start resistor. Resistor R8 assures a positive start for both transistors in the inverter when input power is applied. Then the circuit imbalance and regenerative action previously described causes the inverter to begin the switching action.
(5) Square wave conversion. The square wave

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R output of the inverter is rectified and filtered. The fullwave rectifier associated with the +15 volts dc output consists of CR17 and CR18, and the one associated with the 15 volts dc output consists of CR19 and CR20. RC snubbers, such as C13 and C17, are connected in parallel with each diode to dampen the transients that occur when a rectifier goes from the recovery to the blocking state upon each transition of the inverter square wave. Output filtering is provided by L8 and C22, and L7 and C21.
d. Output Voltage Regulator.
(1) General. The voltage regulator (fig.

FO29), provided for each of the four output voltages, also includes both short circuit and overvoltage protection circuitry. Figure 55 is a simplified block diagram of the functional circuit groups in the voltage regulator. All four voltage regulators incorporate the same functions and operate similarly, therefore the following circuit description applies to each.
(2) Regulator circuits.
(a) The voltage regulator for the +15 volt de output is used as an example in this circuit description. This series type regulator is comprised of a monolithic circuit element (IC2); transistors Q20, Q21, Q10, Q13; and interconnecting discrete components (fig. 56). The integrated circuit element IC2 is a multifunction component that has equivalent circuitry as shown in figure 56 , which is a simplified schematic representation of the regulator circuit. Circuit element IC2 includes a built-in reference voltage source, error amplifier, and series pass transistor. This device also provides for output current limiting by driving an internal currentlimiting transistor from an external currentsensing resistor. Resistors R55, R56, R64 and R84 contribute to setting the allowed upper current level that flows through current-sensing resistor R88. Resistor R88, in conjunction with R89, also splits the load current through transistors Q20 and Q21. Whenever the upper current level is exceeded, causing the currentlimiting transistor within IC2 to conduct, the output voltage from the regulator is reduced. If the voltage reduction to compensate for the over-current load is large enough, the short circuit (under-voltage) detector ((4) below) will shutdown the voltage regulator through Q13 to prevent excessive power buildup in the series pass control element. The currentlimiting feature of IC2 protects the output regulator from overload conditions within the range of a short circuit up to an over-current load which turns on the under-voltage detector.
(b) A temperature-compensated reference voltage is fed through R71 as one input to the error amplifier in IC2. The other input to the error amplifier is taken from the sampling resistor network consisting of R70, RI3, and R12, which collectively

Figure 5-4. Example of dc-to-dc converter.

EL 5820-804-34-TM-59
Figure 5-5. Regulator and output circuit block diagram.
sample a portion of the regulators output voltage. The error amplifier produces a signal that is proportional to the difference between the two inputs. The error amplifier output drives transistor Q10, which inverts the signal so that it is properly phased for negative feedback and amplifies it to drive the series pass control element (Q20 and Q21). The control element interprets the signal and compensates accordingly to maintain the output voltage at a near constant level for temperature, input line, and load current variations.
(c) The sampling resistor network of R70, R13, and R12 determine the closed-loop regulator gain. The output voltage can be varied by adjusting potentiometer R12. The RC network of R71 and C15 controls the rate of rise of the reference voltage generated within IC2, when power is first applied to the output regulator. This in turn controls the rate of rise of the regulator output voltage, and prevents the overvoltage detector circuit ((3) below) from detecting a false overvoltage condition at power turn-on.
(d) If the power supply output is shorted to ground, transistor Q13 is turned on by a signal from the undervoltage detector. When Q13 is turned on, the series pass control element (Q20 and Q21) is turned off, removing the load from the output regulator to prevent internal damage.
(e) Capacitor C14 presents a very low output impedance for sudden changes in load current, thus preventing large changes in output voltage when abrupt load changes occur. Capacitor C14, in conjunction with components R63, C11, R61 and C10, reduces the tendency of the regulator loop to oscillate during heavy loads. Resistor R63 also aids in limiting the current through Q13 and the base-to-collector junction of the current-limiting transistor in IC2, when Q13 is turned on and C14 discharges through them. Diode CR5 prevents C14 from charging in the reverse direction.
(3) Overvoltage protector.
(a) To prevent the modem circuits from being exposed to an overvoltage condition if a power supply output regulator fails, an overvoltage protection circuit is used. The overvoltage protection circuit for the +15 volt dc power supply is shown in figure 5-7, and is typical of the same circuits used in the other three output regulators.
(b) Transistors Q1, Q2 and Q3 form a voltage comparator. The trip-level voltage of the comparator is determined by resistors R5, R6, R2, and R3. The voltage applied to the base of Q3 is less than that applied to CR2 during normal operation, therefore Q1 is cutoff, Q2 conducts, and SCR CR51 does not conduct. When the voltage output from the regulator exceeds the preset overvoltage limit, the voltage at the base of Q3 becomes more positive than the reference voltage of diode CR2, thus transistor Q2 is cutoff and Q3 and Q1 conduct. The conduction of transistor Q1 drives the SCR (CR51) into conduction, which reduces the output voltage.
(4) Under-voltage detector. The simplified circuit shown infigure 5-8 is the under-voltage detector used for the +15 volt voltage regulator, and is typical of the under-voltage detectors employed in the other dc-voltage sources. This circuit serves to protect the output regulator from damage if a short circuit develops across the external load. Capacitors C8 and C9 prevent the turn-off of the voltage regulator (through Q13) during initial power turn-on. After power turn-on, CR4 conducts and turns on transistor Q4. With Q4 conducting, Q12 is held cutoff. When either a short circuit develops across the load, or the current-limiting action of the voltage causes the regulator output voltage to fall below the voltage value of CR4, transistor Q4 cuts off causing Q12 to conduct. When Q12 conducts, a signal is applied to turn on transistor Q13 in the voltage regulator, which effectively shuts down the regulator to prevent damage.

Figure 5-6. +15 volt voltage regulator.

Section III. DIRECT SUPPORT MAINTENANCE INSTRUCTIONS

5-7. General This section contains detailed maintenance instructions for performing direct support level maintenance on the power supply. This maintenance category includes testing, troubleshooting, and replacement operations. Direct support maintenance on the power supply is initiated through the failure of organizational maintenance to obtain the required outputs by adjustment, or because of other system
problems, such as blown fuses, which indicate faulty power supply operation. A power supply suspected of faulty operation should first be bench checked in accordance with the performance test procedure of paragraph 59. Adjustments performed by direct support maintenance are limited to those external adjustments controlling the dc output levels. Internal adjustments, such as setting the overvoltage trip points and overcurrent limits, are not to be attempted at this maintenance category.

Change 1 5-7

Figure 5-7. Overvoltage protector, simplified schematic diagram.

EL 5820-804-34-TM-62

Figure 5-8. Example of undervoltage detector circuit..

5-8. Tools and Test Equipment

The equipment required for testing, troubleshooting, and repairing the power supply is listed below.
a. Oscilloscope, Tektronix 485A.
b. Multimeter, Simpson 270
c. Digital Voltmeter, Fluke 8000A-01.
d. Autotransformer, Variac W50M.
e. Power Supply/Oscillator Test Fixture, SM -D-882197.

5-9.Performance Testing

a. Pretest Information. The performance test procedure should be used in conjunction with the troubleshooting instructions to initially localize a fault. Also, each power supply shall be performance tested following any repair activity, to verify correct operation. Prior to testing a power supply, conduct a visual inspection for obvious defects and make repairs as required. First inspect the exterior of the assembly, and then remove the top cover (para 5-11 b) and inspect each subassembly. Look for blistered (overheated) components such as resistors and transistors, loose terminal connections, broken wires, and leakage of electrolyte from capacitors. Also ensure that heat sink fins are free of dust and dirt.
b. Performance Test Procedure.

WARNING

Primary and secondary voltage commons in this power supply are isolated from the chassis. Therefore, large potentials do exist between floating ground and chassis ground.

CAUTION
Whenever power is applied to a power supply, sufficient airflow must be provided to ensure adequate cooling. An external fan must be setup with airflow directed onto the power supply. Failure to observe this precaution will result in equipment damage.
(1) Verify that the AC POWER switch on the test fixture is in the off (down) position.
(2) Plug the test fixture line power cord into a 115 V ac source. Verify that the test fixture internal fan is operating.
(3) Connect equipment as shown ir figure 5-9. Set the multimeter to the 50 V DC scale.
(4) Position an external fan so that the airflow passes directly over the power supply.

Figure 5-9. Initial test setup-power supply assembly test.
Output loading and adjustment test
(5) Set the test fixture AC POWER switch to the ON position, and set LOAD SELECT switch to position 14. Set the multimeter to the 10 V DC scale.
(6) Adjust the +5 V control on the power sup
ply for the lowest possible voltage, as indicated on the multimeter. Verify that the voltage is <4.9 volts dc.
(7) Adjust the +5 V control on the power supply for the highest possible voltage, as indicated on the multimeter. Verify that the voltage is >5.3 volts dc.
(8) Adjust the power supply +5 V control to obtain a reading of $+5.1+0.2$ volts dc on the multimeter.
(9) Set test fixture LOAD SELECT switch to position 15. Verify that the multimeter indicates $5.1+0.2$ volts dc.
(10) Set test fixture LOAD SELECT switch to position 16. Verify that the multimeter indicates $5.1+0.2$ volts dc.
(11) Set test fixture LOAD SELECT switch to position 17, and verify a voltage reading of $5.1+0.2$ volts de.
(12) Set test fixture LOAD SELECT switch to position 10. The voltage to be measured is -5 volts dc, however, the polarity is reversed in the test fixture and therefore a positive voltage is indicated on the multimeter. Adjust the power supply -5 V control for $+5.1+0.2$ volts dc as indicated on the multimeter.
(13) Adjust the power supply 5 V control for a minimum reading on the multimeter. Verify that the voltage is <4.9 volts dc.
(14) Adjust the power supply 5 V control for a maximum reading on the multimeter. Verify that the reading is >5.3 volts dc.
(15) Adjust the 5 V control of the power supply for a multimeter indication of $5.1+0.2$ volts dc.
(16) Set the multimeter to the 50 V DC scale, and set test fixture LOAD SELECT switch to position 6.
(17) Adjust the +15 V control on the power supply to obtain the lowest possible reading on the multimeter. Verify a minimum reading of +15.0 volts dc or less.
(18) Adjust the power supply +15 V control to obtain the maximum reading on the multimeter.
Verify a reading of +15.6 volts dc or more.
(19)Adjust the power supply +15 V control for a multimeter indication of $+15.3+0.1$ volts dc.
(20) Set test fixture LOAD SELECT switch to position 7 , and verify a reading of $+15.3+0.2$ volts dc on the multimeter.
(21) Set test fixture LOAD SELECT switch to position 8 , and verify a voltage indication on the multimeter of $+15.3+0.2$ volts dc.
(22) Set test fixture LOAD SELECT switch to position 18 , and verify a reading of $+15.3+0.2$ volts dc on the multimeter.
(23) Set test fixture LOAD SELECT switch to position 19. Observe multimeter for a reading of $5.1+0.2$ volts dc.
(24) Set the multimeter to the 50 V DC scale, and set test fixture LOAD SELECT switch to position 20 . The voltage being measured is 15 volts dc, however, the polarity is reversed in the test fixture so therefore the multimeter will indicate a positive voltage.
(25) Adjust the 15 V control of the power supply to obtain the lowest possible voltage indication. Verify that the lowest multimeter reading is <15.0 volts dc.
(26) Adjust the 15 V control of the power supply for the highest possible reading on the multimeter. Verify a reading >15.6 volts dc.
(27) Adjust the power supply 15 V control for a reading of $15.3+0.2$ volts dc.
(28) Refer to table 52, and set the test fixture LOAD SELECT switch to the specified positions and observe the multimeter for the associated voltage indications as a final check.
(29) Set the test fixture AC POWER switch to the off (down) position, and disconnect the test equipment.

Output ripple test
(30) Connect equipment as shown in figure 510.
(31) Adjust variac for 120 volts ac and set test fixture AC POWER switch to ON.

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/T(
Table 5-2. Load Switching and Voltage Measurements

LOAD SELECT switch

 position Voltage indication| | |
| :---: | :---: |
| 10 | $15.3+0.2$ volts de |
| 13 | $15.3+-0.2$ volts de |
| 14 | $5.1+0.2$ volts de |
| 15 | $5.1+0.2$ volts de |
| 16 | $5 .+0.2$ volts de |
| 17 | $5.1+0.2$ volts de |
| 18 | $15.3+0.2$ volts de |
| 19 | $5.1+0.2$ volts de |
| 20 | $15.3+0.2$ volts de |

Figure 5-10. Test setup-output ripple regulation, and overvoltage trip point test.
(32) Refer to figure 511 for a typical example of an output waveform showing the ripple characteristics. Set the test fixture LOAD SELECT switch to each of the four positions listed in table 53 and use the oscilloscope to verify that any spikes on the selected output due to dc-todc converter switching are less than 1.0 volts peak-topeak. Also, verify that any low level ripple due to input line frequency is less than 30 mV peak-to-peak on each selected output.

Table 5-3. Load Switching for Output Ripple Measurements

LOAD SELECT switch position	Dc output voltage
1	$+5.1+0.2$ volts
4	$+15.3+0.2$ volts
9	$-5.1+0.2$ volts
11	$-15.3+0.2$ volts

Figure 5-11. Typical dc output showing ripple characteristics.

Overvoltage trip point test
(33) Set LOAD SELECT switch on test fixture to position 1. While observing the output voltage on the digital voltmeter, slowly increase the +5 V adjustment on the power supply until the output voltage begins to oscillate. Verify that the output was between 6.0 and 7.0 volts (overvoltage trip point) when the oscillation occurred. Readjust the +5 V control for $5.1+0.2$ volts as read on the digital voltmeter.
(34) Repeat the procedure in (33) above for test fixture LOAD SELECT switch positions 4, 9, and 11, using the power supply $+15 \mathrm{~V}, 5 \mathrm{~V}$ and 15 V adjustments, respectively. Verify that the trip point is between 17 and 18 volts for the +15 volt outputs (LOAD SELECT positions 4 and 11), and between 6.0 to 7.0 volts for the 5 volt output (LOAD SELECT position 9). After verifying the trip point for each output, readjust the appropriate voltage control on the power supply for the normal operating voltage, as listed below:

LOAD SELECT switch position	Normal output voltage
4	$+15.3 \pm 0.2$ volts
9	$-5.1+0.2$ volts
11	-15.3 ± 0.2 volts
	Regulation test

(35) Adjust the variac for 108 volts rms output.
(36) With the digital voltmeter, measure and record the power supply outputs at the $+15 \mathrm{~V}, 15 \mathrm{~V},+5 \mathrm{~V}$, and 5 V test points on the power supply.
(37) Disconnect P1 from the test fixture.
(38) Adjust the variac for 132 volts rms output.
(39) With the digital voltmeter, measure and record the power supply outputs at the $+15 \mathrm{~V}, 15 \mathrm{~V},+5 \mathrm{~V}$, and 15 V test points on the power supply
(40) Verify that the respective +5 volt and 5 volt measurements taken in (39) above are within +5 mV of the corresponding measurements taken in (36) above. Verify that the respective +15 volt and 15 volt measurements taken in (39) above are within +15 mV of the corresponding measurements taken in (36) above.
(41) Set test fixture AC POWER switch to the off (down) position, remove input to the variac, and disconnect all test equipment.

5-10. Troubleshooting

a. General Trouble Analysis. A faulty power supply shall first be bench checked in accordance with the performance test procedure in paragraph 59. Any out-of-tolerance parameters and abnormal operating conditions displayed during the performance test shall be noted. The fault isolation procedures in this paragraph are presented in tabular format and the individual table titles correspond to the most commonly encountered trouble symptoms observed during performance testing. Refer to figures FO28 and FO29 for schematic diagrams of the power supply. For parts location information and authorized repair parts lists, refer to TM 11582080434P. Appendix B. table B2 contains a wire list of internal power supply connections.
b. Troubleshooting Procedures.
(1) Detailed troubleshooting instructions are given in tables 54 through 517. These tables consist of step-by-step instructions for isolating faults to a subassembly or a component that is replaceable at the direct support. When a trouble symptom is identified, refer to the troubleshooting table title
that most closely corresponds to the symptom. In addition to the general and detailed troubleshooting tables, listings of typical point-to-point resistance and voltage measurements (tables 518 and 519) are provided as fault isolation aids. The troubleshooting tables are listed below.
(a) Table 54. Loss of +5 Volt Output, Troubleshooting Procedure.
(b) Table 55 . Loss of 5 Volt Output, Troubleshooting Procedure.
(c) Table 56. Loss of +15 Volt Output, Troubleshooting Procedure.
(d) Table 57. Loss of 15 Volt Output, Troubleshooting Procedure.
(e) Table 58. Loss of +5 and 5 Volt Complementary Outputs, Troubleshooting Procedure.
(f) Table 59. Loss of +15 and 15 Volt Complementary Outputs, Troubleshooting Procedure.
(g) Table 510. Loss of All Power Supply Outputs, Troubleshooting Procedure.
(h) Table 511. High Output Voltage, Troubleshooting Procedure.
(i) Table 512. All Output Voltages Low, Troubleshooting Procedure.
(i) Table 513 . Low +15 and 15 Volt Complementary Outputs, Troubleshooting Procedure.
(k) Table 514. Low +5 and 5 Volt Complementary Outputs, Troubleshooting Procedure.
(1) Table 515. Low Output Voltage, Troubleshooting Procedure.
(m) Table 516. Output Voltage Oscillation, Troubleshooting Procedure.
(n) Table 517. Excessive Line Frequency Ripple On Outputs, Troubleshooting Procedure.

WARNING

High voltages are present within the power supply. Be extremely careful to avoid contact with high voltages when making internal measurements or adjustments with the top cover removed. Remove all power before performing any resistance or continuity checks, or any removal or replacement operations.

WARNING
Input filter capacitors PS1C5, C6, C7 of the power supply do not have one side () tied to chassis ground. Therefore large potentials do exist between this floating ground and chassis ground.

WARNING
Before disconnecting the electrical leads to input filter capacitors PS1C5, C6, or C7, allow at least 1 minute after removing power from the power supply for the capacitor voltage charge to bleed off.

Table 5-4. Loss of +5 Volt Output, Troubleshooting Procedures

Step	Symptom	Procedure	Probable cause/corrective action
1	Loss of +5 volt output	Measure voltage between $\mathrm{J} 2-13$ (-) and J2-14 (+) on voltage regulator board A2 Normal reading is $19+2$ volts dc.	If reading is normal or high, proceed to step 2 If reading is low, perform step 5.
2	Voltage between A2J2-14 and $\mathrm{A} 2 \mathrm{~J} 2-13$ is normal or high	Measure voltage between $\mathrm{J} 2-13(-)$ and $\mathrm{J} 2-$ $16(+)$ on voltage regulator board A2. Normal reading is greater than 6 volts dc	If reading is normal, go to step 3 If reading is low, voltage regulator board A2 is defective or undervoltage detection circuit has been activated by an overcurrent condition. Replace voltage regulator board A2. If this does not correct fault, return original voltage regulator board to power supply and check components A1OCR49 and A9C51 for circuits (see table 5-18ffor typical output resistance measurements).
3	Voltage between A2J2-13 and A2J2-16 is normal	Measure voltage between J2-16 (+) and J217 (-) on voltage regulator board A2 Voltage is $0.8+0.4$ volt dc	If voltage reading is high, transistor A8Q12 is probable cause. If reading is normal, perform step 4.
4	Voltage between A2J2-16 and $\mathrm{A} 2 \mathrm{~J} 2-17$ is normal	Measure voltage between J2-17 (+) and J2-$18(-)$ on voltage regulator board A2 Normal voltage reading is $0.8+0.4$ volt dc	If voltage reading is normal, check for presence of 9.25 ± 2.0 volts dc between A2J2-13 (-) and col lector of transistor A8Q14. No voltage present indicates probable cause is broken wire between A1T1C-23 and collector of transistor A8Q14. If voltage reading is high, check for open connection between transistor A8Q12 emitter and A8Q14 base.
5	Voltage between A2J2-13 and A2J2-14 is low	Probable fault is shorted voltage regulator (A2 subassembly) input, or defective component in dc-to-dc converter circuits (faulty AI, A4, or A5 subassembly)	Replace subassembly A2 (voltage regulator). If fault is not corrected, return original subassembly A2 to power supply and return power supply to depot for repair.

Change 1 5-12

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31 R5-2G-272
Table 5-5. Loss of -5 Volt Output, Troubleshooting Procedure

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table 5-7. Loss of-15 Volt Output, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Loss of -15 volt output If	Measure voltage between J3-4 (-) and J3-7 (+) on voltage regulator board A2. Normal reading is 22.5 ± 3.0 volts de.	If reading is normal or high, perform step 2 reading is low, perform step 5 .
2	Voltage between A2J3-4 and A2J3-7 is normal or high	Measure voltage between J3-6 (-) and J3-7 $(+)$ on voltage regulator card A2. Normal reading is $0.8+0.4$ volt dc	If reading is normal, perform step 3. If reading is high or low, replace voltage regulator A2 subassembly. If fault is not corrected, reinstall original A2 subassembly, and check transistor A7Q11 for shorted or open base-to-emitter junction. If A7Qll appears good, check components A10CR52 and A9C54 for short circuit (see table 5-18 for typical output resistance measurements).
3	Voltage between A2J3-6 A2J3-7 is normal.	Measure voltage between J3-4 (-) and J3-5 $(+)$ on voltage regulator board A2. Normal reading is greater than 16 volts dc	If voltage reading is low, transistor A7Q11 is and probable cause If reading is normal, perform step 4.
4	Voltage between A2J34 A2 $\mathrm{J} 3-5$ is normal.	Measure voltage between J3-5 (+) and J3-9 $(-)$ of voltage regulator board A2. Normal reading is $0.8+0.4$ volt dc	If voltage reading is normal, check resistors and A7R90 and A7R91 and associated wiring for open circuit. If reading is high, check transistors A7Q22 and A7Q23 and associated wiring for open circuit.
5	Voltage between A2J3-4 and A2J3-7 is low	Probable fault is shorted input to voltage regulator board A2 or defective component in dc-to-dc converter circuit (faulty A1, A4, or A5 subassembly)	Replace voltage regulator board A2. If fault is not corrected, return original A2 subassembly to power supply, and return power supply to depot for repair.

Table 5-8. Loss of +5 and -5 Volt Complementary Outputs, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Loss of both +5 and -5 volt outputs	Dc-to-dc converter not operating. Measure voltage between capacitors PSIC5, C6, C7 common I -) bus and transformer AIT1C- 14. Normal voltage reading is 155 ± 30 volts de.	If voltage reading is normal, perform step 2 If no voltage is present, check for broken wires or connections from PS1C5 (+) to A1TIC-14 and repair as required.
2	Voltage between capacitors PS1C5, C6, C7 common (-) bus and A1T1C-14 is normal. winding	Measure voltage between capacitors PS1C5, C6, C7 common (-) bus and transformer AITID-20. Normal reading is $0.6+0.3$ volt dc	If voltage reading is normal, perform step 3. If reading is high check for; open resistor A6R10 or A6R12, open base-to-emitter junction on transistor A6Q6 or A6Q7, open transformer between A1T1D-19, AIT1D-20, or A1TID-21 If voltage reading is not present, resistor A3R1 is open If transformer AIT1D winding or resistor A3R1 is open, return the power supply to the depot for repair.
3 4	Voltage between capacitors PSIC5, C6, C7 I -) bus and A1T1D-20 is normal	Remove input power from power supply and measure continuity between transformer windings as follows: A1TID-17 to AITIC-16. 1 ohm max A1T1C-14 to AIT1C-13 1 ohm max. A1T1C-14 to AITIC-15 1 ohm max.	If any measurement exceeds 1 ohm, subassembly Al is faulty and power supply should be common returned to depot. If measurements are normal, perform step 4.
4	Transformer winding continuity is normal	Check for the following possible faults: a. Shorted diode A6CR53 or A6CR55, or open A6CR54. b. Shorted base-to-emitter junction on transistor A6Q6 or A6Q7. c. Open base-to-collector junction on transistor A6Q6 or A6Q7. d. If items above are normal, check for open resistor A1R165.	a Replace faulty diode. b Replace faulty transistor. c Replace faulty transistor. d Return power supply to depot for repair.
		Change 1 5-14	

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table 5-9. Loss of +15 and -15 Volt Complementary Outputs, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Loss of both +15 and -15 volt outputs	Dc-to-dc converter not operating or +15 volt output has failed. Measure voltage between J3-4 (-) and J3-7 (+) on voltage regulator board A2. Normal reading is greater than 18 volts.	If reading is normal, refer to table 5-6. step 1If reading is low or zero, perform step 2 below.
2	Voltage between A2J3-4 and $\mathrm{A} 2 \mathrm{~J} 3-7$ is low or zero.	Dc-to-dc converter not operating. Measure voltage between capacitors PSIC5, C6, C7 common (-) bus and transformer A1T1A8. Normal reading is $155+30$ volts dc	If voltage reading is normal perform step 3 If no voltage is present, check for broken wires or connections between capacitor PSIC5 (+) and transformer A1T1A-8.
3	Voltage between capacisistor PSIC5, C6, C7, (-).C6, bus and transformer A1T1A -8 is normal.	Measure voltage between capacitors PSIC5, C7 (-) bus and transformer A1T1B26. Normal reading is $0.6+0.3$ volt dc	If voltage reading is normal, perform step 4. If reading is high, check for open resistor A6R9or A6R11, open base-to-emitter junction on transistor A6Q4 or A6Q5, open transformer winding between A1T1B-26, A1T1B-25, or A1T1B- 27. If no voltage is present, open resistor A3R8 is probable cause If transformer A1T1B winding or resistor A3R8 is open, return the power supply to the depot for repair.
4	Voltage between capacitors PSIC5, C6, C7 common (-) bus and A1T1B-26 is normal	Remove input power from power supply and measure continuity between transformer windings as follows: A1T1B-28 to A1T1A-29 1 ohm max A1T1A-8 to A1T1A-7 1 ohm max. A1T1A-8 to A1TIA-9 1 ohm max.	If any measurement exceeds 1ohm,subassembly A1 is defective and power supply should be returned to the depot for repair. If all measurements are normal, perform step 5.
5	Transformer winding continuity is normal	Check for the following possible faults: a. Shorted diode A6CR56 or A6CR58 or open diode A6CR57. b. Shorted base-to-emitter junction on transistor A6Q4 or A6Q5. c. Open base-to-collector junction on transistor A6Q4 or A6Q5. d. If items above are normal, check for open resistor A1R164.	a. Replace defective diode. b. Replace defective transistor. c. Replace defective transistor. d. Return power supply to depot for repair.

Table 5-10. Loss of All Power Supply Outputs, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	No de outputs	Check for open ac line power fuse	Replace ae line fuse. If fuse blows. upon application of power, perform step 2. If ac line fuse is not open, perform step 7.
2	Ac line fuse blows on power application	Remove input power from power supply and disconnect two pairs of leads from the (+) bus of capacitors PSIC5, C6, and C7. Reapply input power to power supply	If ac line fuse blows, short circuit is in transient suppressor or bridge rectifier circuits; return power supply to depot for repair. If ac line fuse does not blow, fault is in capacitors PSIC5, C6, C7; dc-to-dc converter circuits; or voltage regulator input. Perform step 3.
3	Input line fuse does not blow with capacitor PS1C5, C6, C7 + bus disconnected.	Check capacitors PSiC5, C6, and C7 for high leakage or shorts. Leakage resistance is less than 100 K ohms	If capacitor PSiC5, C 6 , or C 7 shows evidence of leakage or shorting, replace faulty components. If capacitors are good, perform step 4.
4	Capacitors PS1C5, C6, and C7 not faulty	Check between following points for indicated resistance: A2J2-13 to A2J2-14 A2J3-13 to A2J3-14 A2J2-4 to A2J2-7 2000 ohms min A2J3-4 to A3J3-7	If all resistance measurements are satisfactory, perform step 6 If a measurement is less than the indicated value, note the particular measurement and perform step 5 .
5	Resistance measurement in step 4 not satisfactory	Remove voltage regulator board A2 and. repeat abnormal measurement taken in step 4 on the power supply Change 1 5-15	If measurement is now satisfactory, fault is in voltage regulator board A2. Replace faulty voltage regulator board A2. If the measurement is still low, the fault is in subassembly A4 or A5. In this case, return the power supply to the depot for repair.

Change 1 5-15

Table 5-10. Loss of All Power Supply Outputs, Troubleshooting Procedure- Continued

Change 1 5-16

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table 5-11. High Output Voltage, Troubleshooting Procedure- Continued

Step	Symptom	Procedure	Probable cause/corrective action
		output voltage of the supply and discon-	
	nect the collector leads of the parallel		
	transistors one at a time. After each col-		
	lector lead is disconnected, check for a de-		
	crease in the abnormally high output.		
	When performing this check, only one col-		
	lector should be disconnected at any one		
	time. The three groups of parallel-		
	connected output transistors are listed		
	below.		
	+5 volt supply: A8Q14, Q15, Q16, Q17,		
	Q18.		
	+15 volt supply: A7Q20, Q21.		
		-15 volt supply: A7Q22, Q23.	

Table 5-12. All Output Voltages Low, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Low output, all voltages	Fault is low line voltage, bridge rectifier diode open, or open filter capacitor. Verify input voltage.	If input line voltage is normal, go to step 2.
2	Input line voltage normal	Check capacitors PS1C5, C6, and C7 for open condition. (See A., figure 5-13 for typical oscilloscope wave-form and table 518 for resistance measurement to aid in checking capacitors.)	Replace faulty capacitor. If no capacitor is faulty, return power supply to depot for bridge rectifier diode fault isolation and repair.

Table 5-13. Low +15 and -15 Volt Complementary Outputs, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Low +15 and - 15 volt outputs	Probable fault is in dc-to-dc converter oscilloscope verify presence of 310 volt peak-to-peak square wave (see A, figure $5-12$) at A1T1A-9 and A1T1A-7, using (-) bus of PS1CS, C6, C7 as ground reference At both measurement points the low part of wave-form should be less than 3 volts, indicating transistors A6Q5 and A6Q4 are saturating.	With If wave-form indicates absence of transistor saturation at both A1T1A-9 and A1T1A-7, check diode A6CR57 for open or shorted condition and check resistors A6R9 and A6R11for correct values. If correct wave-form is not present at only one point (A1T1A-7 or AIT1A-9), proceed to step 2 or 3 as applicable.
2	Wave-form at A1T1A-9 does not indicate transistor saturation	Transistor A6Q5 not saturating. Check for open diodes A6CR57, A6CR56, A6CR58. Also check for leaky transistor A6Q4 or low gain of transistor A6Q5. \{See B and C, figure 5-12 for typical waveshapes in troubleshooting components.)	Replace defective component(s) as necessary.
3	Wave-form at A1T1A-7 does not indicate transistor saturation	Transistor A6Q4 not saturating. Check for open diodes A6CR56, A6CR57, A6CR58. Also check for leaky transistor A6Q5 or low gain of transistor A6Q4. (See B and C, figure 5-1 2 for typical waveshapes in troubleshooting components.)	Replace defective components as necessary.

Table 5-14. Low +5 and -5 Volt Complementary Outputs, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Low +5 and -5 volt outputs	Probable fault is in dc-to-dc converter. With oscilloscope verify presence of 310 volt peak-to-peak square wave (see A, figure $5-12\}$ at A1T1C-13 and A1TIC-15, using (-) bus of PSIC5, C6, C7 as ground reference. At both measurement points the low part of waveform should be less than 3 volts, indicating transistors A6Q6 and A6Q7 are saturating.	If waveform indicates absence of transistor saturation at both AITIC-15 and A1TIC-13, check diode A6CR54 for open or short condition and check resistors A6R10 and A6R12 for correct values. If normal waveform is not present at only one point (AITIC-15 or AIT1C-13), proceed to step 2 or 3 as applicable.
2	Waveform at A1T1C-13 does not indicate transistor saturation	Transistor A6Q6 not saturating. Check for open diodes A6CR53, A6CR54, A6CR55. Also check for leaky transistor A6Q7 or low gain of transistor A6Q6. (See B and C, figure 5-1 2 for typical waveshapes in troubleshooting components.)	Replace defective components as necessary.
3	Waveshape at A1T1C-15 does not indicate transistor saturation	Transistor A6Q7 not saturating. Check for open diodes A6CR53, A6CR54, A6CR55. Also check for leaky transistor A6Q6 or low gain of transistor A6Q7. (See B and C, figure 5-1 2 for typical waveshapes in troubleshooting components.)	Replace defective components as necessary.

Table 5-15. Low Output Voltage -Single Output, Troubleshooting Procedure

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table 5-16. Output Voltage Oscillation, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Output oscillates between		
	approximately 0 volt And normal output level	Oscillation is result of output level adjust- ment set too high, high voltage fault, or faulty overvoltage detection circuit. Ad- just output level adjustment on voltage regulator board A2 to reduce output to	If output adjustment does not affect oscillation problem, perform step 2.
		proper level.	

$4 \quad$| SCR crowbar diode is not |
| :--- |
| faulty |

+15 volt supply: A100CR51
+15 volt supply: A10OCR51
-15 volt supply: A10CR52
Check appropriate current limit resistor for open condition:
+5 volt supply: A8R82
-5 volt supply: A7R87
+15 volt supply: A7R88
-15 volt supply: A7R90

Table 5-17. Excessive Line Frequency Ripple on Outputs, Troubleshooting Procedure

Step	Symptom	Procedure	Probable cause/corrective action
1	Excessive ripple on all outputs	Refer to table 5-12 for troubleshooting procedure (See figure 5-1 1 for allowable ripple limits on dc outputs.)	
2	Excessive ripple on single output.	Fault is defective voltage regulator board A2 or output filter. Replace voltage regulator board A2. (Se figure 5-11 for allowable ripple limits on dc output.)	If excessive ripple is reduced, voltage regulator was faulty. If ripple is not reduced, reinstall original voltage regulator board. Probable cause is then the output filter capacitor (A9C51, A9C52, A9C53, or A9C54) associated with the de output containing the ripple.
3	Excessive ripple on complementary outputs	Probable cause is defective component in dc-to-dc converter. (See fig.5-11 for allowable ripple limits on de outputs.)	If ripple is present in +-15 volt complementary outputs, perform troubleshooting procedure in table 5-13. If ripple is present on +5 volt outputs, perform troubleshooting as outlined in table 5-14

Table 5-18. Typical Resistance Measurements

From (+)	To (-)	Scale	Reading	Comments
PS1C5 (+)	PSIC5 (-)	Rx 100	1200Q	
PS1JI-1	PSIJ1-2	R $\times 100$	>100KQ	
PSIJ1-2	PSIJ-1	R $\times 100$	>100KQ	
+5 V (TP)	COM (TP)	R× 100	950Q	
+15 V (TP)	COM (TP)	Rx 100	1550Q	
-15 V (TP)	COM (TP)	$\mathrm{R} \times 100$	1650Q	
-5 V (TP)	COM (TP)	R×100	950Q	
+5V (TP)	COM (TP)	$\mathrm{R} \times 10000$	50 KQ	
+15 V (TP)	COM (TP)	Rx 10000	150KQ	\}With A2J2 and AZJ3 disconnected:
$\begin{aligned} & -15 \mathrm{~V} \text { (TP) } \\ & -5 \mathrm{~V} \text { (TP) } \end{aligned}$	$\begin{aligned} & \text { COM (TP) } \\ & \text { COM (TP) } \end{aligned}$	$\begin{aligned} & R \times 10000 \\ & R \times 10000 \end{aligned}$	$\begin{aligned} & 150 \mathrm{KQ} \\ & 50 \mathrm{KQ} \end{aligned}$	allow 1 minute charge time.

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table 5-19. Typical Voltage Measurements

	Scale	Reading		
From (+)	To (-)	$(+\mathrm{dc})$	(in volts)	Comments
PSIC5 (+)	PSIC5 (-)	250 V	155	120 V ac, 60 Hz input.
PSIR1 (top)	PS1C5 (-)	50 V	21	PS1RI located on right side of chassis.
A2J2-14	COM (TP)	50 V	19.0	+5 V regulator.
A2J2-16	COM (TP)	10 V	6.8	+5 V regulator.
A2J2-17	COM (TP)	10 V	6.3	+5 V regulator.
A2J2-18	COM (TP)	10 V	5.7	+5 V regulator.
A2J2-7	COM (TP)	50 V	22.5	+15 V regulator.
A2J2-6	COM (TP)	50 V	22.0	+15 V regulator.
A2J2-5	COM (TP)	50 V	16.9	+15 V regulator.
A2J2-9	COM (TP)	50 V	16.1	+15 V regulator.
A2J3-14	COM (TP)	50 V	14.5	-5 V regulator.
A2J3-16	COM (TP)	2.5 V	1.75	-5 V regulator.
A2J3-17	COM (TP)	2.5 V	1.25	-5 V regulator.
A2J3-18	COM (TP)	2.5 V	0.6	-5 V regulator.
A2J3-7	COM (TP)	10 V	7.5	-15 V regulator.
A2J3-6	COM (TP)	10 V	6.9	-15 V regulator.
A2J3-5	COM (TP)	2.5 V	1.15	-15 V regulator.
A2J3-9	COM (TP)	2.5 V	0.60	-15 V regulator.

A.

TRANSISTORS A6Q4, A6Q5, A6Q6, A6Q7 COLLECTOR TYPICAL WAVEFORM, USING C5 (-) BUS AS GND REFERENCE.
B.

AITID-19, AITID-21, AITIB-25, AITIB-27 TYPICAL WAVE FORM, USING C5 (-) BUS AS GND REFERENCE.

C.

TRANSISTORS A6Q4, A6Q5, A6Q6, A6Q7 BASE - TYPICAL WAVEFORM, USING C5 (-) BUS AS GND REFERENCE.

EL 5820-804-34-TM-66

Figure 5-12. Dc-to-dc converter-typical waveforms.
Change 1 5-20

A. C5, C6, C7 (+) BUS TO (-) BUS, TYPICAL WAVESHAPE
 COMMON AS (-) REF.

EL 5820-804-34-TM-67

Figure 5-13. Typical input filter and output drive circuit waveforms.
(2) To perform certain measurements as required in the troubleshooting procedures, removal of the power supply top cover and partial removal of other subassemblies are necessary. Removal and replacement procedures are covered in paragraph 511. For all resistance and voltage measurements required in the troubleshooting procedures, use a multimeter unless otherwise specified. All component reference designators in the troubleshooting procedures are prefixed with the pertinent subassembly reference designator to aid in the physical location of components.

5-11. Removal and Replacement Procedures

a. Power Supply PS1. To remove or replace the power supply, refer to the instructions in paragraph 39b.
b. Power Supply Top Cover. Remove the 13 screws labeled A in figure 514. Lift top cover and swing back to position shown in figure 52, revealing voltage regulator board A2. To replace the top cover, reverse the above procedure.
c. Printed Circuit Voltage Regulator) Board A2.

Remove top cover as instructed in b above. Remove the two retaining screws (fig. 52) from each connector (A2J2 and A2J3) on the voltage regulator board and disconnect the cable connectors. Remove the seven screws labeled B in figure 514, to free the board from the top cover. Reinstall the voltage regulator board in the reverse order of removal.
d. Heat Sink Assemblies A 6, A 7, and A8.
(1) Remove two retaining screws (fig. 515) from one side of the heat sink assembly, then loosen the two retaining screws on the other side of the assembly. Slide the heat sink assembly sideways to free it from the loosened screws, and fold it out and away from the power supply chassis as shown in figure 515 for access to heat sink assembly components.
(2) When replacing power transistors on a heat sink assembly, be sure to install insulating washers with thermal compound applied to both sides of washers.
(3) Replace heat sink assemblies by reversing the instructions in (1) above.

Figure 5-14. Top view power supply.
e. Terminal Board Assembly A9. Loosen and remove heat sink assembly A8 as described in d above, to expose terminal board A9 mounting screws. Remove the four mounting screws and nuts securing the terminal board to the chassis.

NOTE
It is generally possible to remove most of the components on the terminal board without removing the terminal board from the chassis.
f. SCR Mounting Assembly A10. Remove the two mounting screws located on the side of the power supply adjacent to the SCR mounting assembly. When replacing an SCR on the mounting assembly, be sure to install insulating washers with thermal compound applied to both sides of the washer. When replacing SCR CR49, bend the long lead on CR49 to prevent interference with the top cover of the power supply. While bending the lead, support the lead between the glass seal and the bend to prevent cracking the seal.

Change 1 5-22

Figure 5-15. Bottom of power supply chassis with heat sinks folded out.

APPENDIX A

REFERENCES

DA Pam 310-4 Index of Technical Manuals, Technical Bulletins, Supply Manuals (Types 7, 8, and 9), Supply Bulletins, and Modification Work Orders.
DA Pam 310-7
TM 11-5820-803-12
TM11-5820-804-12
TM11-5820-804-20P
TM11-5820-804-34P
TM 11-5895-807-13
TM 38-750
TM 740-90-1
TM 750-244-2

US Army Index of Modification Work Orders.
Operator and Organizational Maintenance Manual for Modem, Digital Data MD921/G.
Operator and Organizational Maintenance Manual for Modem, Digital Data MD920A/G.
Organizational Maintenance Repair Parts and Special Tools List for Modem, Digital Data MD-920A/G.
DS, GS, and Depot Repair Parts and Special Tools List for Modem, Digital Data MD920A/G.
Operator's, Organizational and Direct SupportMaintenance Manual: Encoder-Decoder KY-801/GSC (NSN 5895-01-034-1061).
The Army Maintenance Management System (TAMMS).
Administrative Storage of Equipment.
Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command).

Change 1 A-1/(A2 blank)

This appendix contains interconnecting wire run lists for the Synthesizer and Bit
Synchronizer card file, A2A1 (table B-1) and Power Supply, A2PS1 table B-2).

Change 1 B-1/(B-2 blank)

Table B-1. Synthesizer and Bit Synchronizer, Wire List

GENERAL NOTES

I THIS IS A DOUBLE EFTRY TABULAR FORM RUNNING LIST, ALSO KNOWN AS A PIN DICTIONARY. THE SECOND ENTRY CF A WIRE IS INDICATED BY AN ASTERISK (*) FOLLOWING THE WIRE NUMBER EXAMPLE-1708 ANU 178* ARE FIRST AND SECOND ENTRIES CF THE SAME WIRE NUMBER.

2 COLOR CODE ABBREVIATICNS ARE PER USAS Y14.15 AND MIL-STD-12.
BLACK IS BK, BROWN IS BR, RED IS R, ORANGE IS O, YELLOW IS Y,GREEN IS G, BLUE IS BL, VIOLET IS V, GRAY (ALSO CALLED SLATE), IS GY WHITE IS ,.

3 THE FOLLOWING NODE NAMES AND WIRE COLORS ARE STANDARD:
SIGNALS ARE WHITE, RETURNS ARE BLACK, GROUND IS GND AND COLOR BLACK, +5 VC IS RED, -5 VOC IS YELLOW, +12VDC IS BROWN -12ZVDC IS BLUE +15VDC IS GREEN, -15VDC IS VIOLET, AND +28VDC IS ORANGE. VENDOR ASSEMBLIES WILL NOT BE REWORKED TO MEET THIS REQUIREMENT.

5 MATERIAL IS CALLED OUT ON THE NEXT ASSEMBLY. ITEM ENTRIES ARE FOR REFERENCE ONLY AND THE FOLLOWING ABBREVIATIONS ARE USED. 188 IS RG188A/U. 30SCL IS SOLID AWG 30, INSULATED WIRE WRAP WIRE, E-16 IS INSULATED STRANDED TYPE E WIRE PER MIL-W-16878/4. STW2 INSICATES SHIELDED TWISTED PAIR. INTERNAL CODING MAY BE SHOWN FOR REF.

6 WHEN 2 OR MORE WIRES ARE INSEPARABLY ASSEMBLED (EXAMPLE COAX AND SHIELDED TWISTED PAIR) THEY ARE GIVEN THE SAME WIRE NU'MER. SHIELD PIGTAILS MUST HAVE SEPARATE WIRE NUMBER.

7 LOWER CASE CHARACTER IS INDICATED BY AN APOSTROPHE FOLLOWING THE LETTER EXAMPLE LOWER CASE A IS A'. A SHIELD COVER IS INDICATED BY A DOLLAR SIGN FOLLOWING THE TERMINAL NAME. EXAMPLE E1\$ IS THE SHIELD OVER THE WIRE GOING TO E1.

TERMINATION NOTES
(TERMINATION NOTE NUMBERS MAY NOT BE CONTINUOUS)

1. SOLDER WIRE TO TERMINAL INDICATED IN LIST.

2 CRIPF WIRET COAX CR TWISTED PAIR IN CONTACT PER SM-A-731333-50 TRU 55 AND INSTALL IN CCNNECTOR PER SM-A-731330-1 THRU 4 AT POSITION GIVEN IN LIST.

6 WRAP AWG 26 OR LAC 30 SOLID WIRE CN .025 SQUARE POST. 6 TURNS MINIMUM CF PARE WIRE AECVE 1.5 TURNS MINIMUM OF INSULATED WIRE ARE REQUIRED. REF MIL-STD-1130. INSLLATICN WRAP MAY BE OMITTED ON TEFLON COVERED WIRE.

SYNTH \& 3IT SYNC I
HIGHEST WIRE KUMEER IS 1070

SIZE CODE IDENT NO.
A 80063

REV
SM-A-759628
F
SHEET 3

Change 1 B-3

7 SCLDER WIRE TO .. 025 SQUARE POST. USE CAUTION TO AVOID DAMAGE TO INSULATION. SOLDER SLEEVE OPTIONAL. IF SOLDER HAS NOT ROUNDED CORNERS OF PCST, WIRE WRAP IS OPTIONAL.

9 CONNECT PIGTAIL TO SHIELD BY USE OF CRIMP OR SOLDER SLEEVE.
10 TERMINATE SHIELD BY CUTTING BACK NEAR TERMINAL. KEEP EXPOSE BRAID SHORT, COVER COUT EDGES WITH HEAT SHRINK SLEEVING.

11 SOLDER BUS-BAR TO TERMINALS INDICATED IN LIST. USE CAUTION TO AVOID DAMAGE TC INSTALLATION.

12 CRIMP 1 OR 2 WIRES IN 1 MS25036 TYPE LUG. BOTH WIRES WILL CARRY THE SAME WIRE NUMBER. DO NOT EXCEED THE CIR-MILL RATING OF THE LOG.

13 TERMINATE COAX IN SMA CONNECTOR. NOTE SHIELD IS CARRIED THRU.
14 ATTACH COAX TO ADAPTER AT BOTH ENDS PER FIGURE 1. PLACE ADAPTERS OVER WIREWRAP PINS AS INDICATED N LIST AND SOLDER. USE CAUTION TO AVOID DAMAGE TO IINSULATION.

15 ATTACH COAX TO ADAPTER AT ONE END PER FIGURE 1. PLACE ADAPTER OVER WIREWRAP PINS AS INDICATED IN LIST AND SOLDER. USE CAUTION TO AVOID DAMAGE TO INSULATION.
(SYNTH \&BIT SYNC
HIGHEST WIRE NUMBER IS 1070

SM-A-759628 SHEET 4

Change 1 B-4

Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

$\begin{aligned} & \text { WIRE } \\ & \text { AC. } \end{aligned}$	FRPM		EAD TO	TERM	$\begin{aligned} & \text { COLCR } \\ & \text { ITEN } \end{aligned}$		$\begin{aligned} & \text { REF } \\ & \text { NODE } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	REMARKS	$\begin{aligned} & R \\ & E \\ & V \end{aligned}$
	END	TERM								
161	ACAPTER	16114	A1xal1-29	14	188	SHLD	GNO	cosx		
161	ADAPTER	16114	A $1 \times$ A11-30	14	188	CTR	TVCO	coax		
161	ADAPTER	16114	A1×A11-31	14	188	SHLD	GND	coax		
161	ADAPTER	16114	A1xal1-65	14	188	SHLD	GND	$\cos x$		
161	ADAPTER	16114	A1xali-66	14	188	CTR	TVCO	$\cos x$		
161	ADAPTER	16114	A1xA11-67	14	188	SHLD	GND	cosx		
161	ADAPTER	16115	J02-K	2	188	CTR	TVCO	coax		B
162	ADAPTER	$1 \in 214$	A1×A11-20	14	188	SHLD	GND	cosix		
162	AOAPTER	16214	A1×A11-21	14	188	CTR	TVCONT	$\cos x$		
162	ADAPTER	16214	A $1 \times 111-22$	14	188	SHLD	GNU	CoAx		
162	ADAPTER	16214	A1XA11-56	14	188	SHLD	GND	CCAX		
162	AOAPTER	16214	A1XA11-57	14	188	CTR	TVCONT	$\cos x$		
162	ADAPTER	1 ¢2 14	A $1 \times 411-58$	14	188	SHLD	GNU	Cosx		
162	AOAPTER	16215	J02-M	2	188	CTR	TVCONT	CCAX		e
509	ADAPTER	5CS 14		14	188	SHLD	GND	COAX		
509	ACAPTER	5 CS 14	A1xAC?-32	14	188	CTR	TSC45M	$\cos x$		
509	ADAPTER	50914	$A 1 \times A C 2-33$	14	188	SHLD	GNO	$\cos x$		
509	ADAPTER	50514	A $1 \times A C 3-67$	14	188	SHLD	GNu	CDAX		
509	ACAPTER	5CS 14	AlXAC $2-68$	14	188	CTR	TSC45M	CCAX		
509	AOAPTER	5CG 14	$A 1 \times A C 3-69$	14	188	SHLD	GND	COAX		
509	ADAPTER	5CS 14	$A 1 \times A 1 \bar{z}-27$	14	188	SHLD	GND	cosix		
509	ACAPTER	5CG 14	A1xal2-28	14	188	CTR	TSC45M	COAX		
509	ADAPTER	50914	$A 1 \times A 1 z-29$	14	18 C	SHLD	GND	CCAX		
509	ACAPTER	50914	AlXA1z-t3	14	188	SHLD	GND	$\cos x$		
509	AOAPTER	$5 C 914$	A $1 \times \pm 1=-64$	14	188	CTR	15C45M	$\cos x$		
509	ADAPTER	50914	$A_{1} \times \Delta 1 z-65$	14	188	SHLD	GND	coax		
510	ACAPTER	51014	$A 1 \times A C 3-C 6$	14	188	SHLD	GNO	Cost		
E 10	ACAPTER	51014	$A 1 \times A C-C 7$	14	188	CTA	IMIXO	$\cos x$		
510	ADAPTER	51014	$A 1 \times A C ?-C 8$	14	188	SHLD	GND	COAX		
510	ADAP TER	51014	$A 1 \times A C \geq-42$	14	188	SHLC	CND	coax		
E 10	ADAPTEA	51014	A $1 \times A C 3-43$	14	188	C IR	TM 1×0	$\cos x$		
510	ACADTER	51014	$A 1 \times A C 3-44$	14	188	SHLD	GNO	coax		
510	AUAPTER	51014	A1xA10-02	14	188	SHLO	GND	$\cos x$		
510	ACAPTER	51014	A1xal0-C3	14	188	CTR	TMIXO	$\cos x$		
510	ACAPTEP	51014	$\mathrm{AlXA1O}_{5} \mathrm{C}_{4}$	14	188	SHLC	GNO	COAX		
510	$\triangle C A P T E R$	$510 \quad 14$	$A 1 \times A 10-38$	14	183	SHLC	CNO	coax		
510	$\triangle D A P T E R$	51014	A1xA10-39	14	188	CIR	TMix	coax		
510	ACAPTER	51014	A1XA1C-4C	14	188	SHLD	GND	COAX		
536	ADAPTER	53614	$\triangle 1 \times A C \leftarrow 29$	14	188	SHLD	GND	COAX		
536	ADAPTER	¢3t 14	$A 1 \times A C t-3 C$	14	188	CTR	T 45 NVCO	COAX		

$\begin{aligned} & \text { WIRE } \\ & \text { NC. } \end{aligned}$	Ffir			EAC 10	TERM	COLOR		REF NODE	$\begin{aligned} & N \\ & 0 \\ & \mathbf{N} \\ & \mathbf{E} \end{aligned}$	REMARKS	R E		
	END	TERM						v					
\$36	ADAPTER	5361	14		Alxact-31	14	188		SHLD	GND	$\cos x$		
¢ 36	ADAPTER	5361	14	A1xact-65	14	188	SHLD	GND	coax				
536	ADAP TER	5361	14	A1XACt -6	14	188	CTR	T45MVCO	coax				
536	ADAPTER	5361	14	AIXACE-67	14	188	SHLD	GND	coax				
536	ACAPTER	5361	14	A1XACE-29	14	188	ShLD	GND	coax				
536	ADAPTER	5361	14	A1) 4 CE-3C	14	188	CTR	T45MVCO	cosex				
536	ADAPTER	5361	14	$\triangle 1 \times \Delta C F-1$	14	188	SHLD	GND	cosax				
536	AOAPTER	$53 t 1$	14	AIXACEt5	14	188	SHLD	GND	coax				
536	ADAPTER	536	14	AlXACE-E6	14	188	CTR	T45MVCO	COAX				
536	ADAPTER	5361	14	A1)ACE-67	14	188	SHLO	GND	coax				
543	ACAPTEK	5431	14	Alyact-c9	14	183	SHLO	GNO	CoAX				
543	ADAPTER	5431	14	A1×ACE-10	14	188	CTR	tSCTCXO	$\cos x$				
543	GDAPTER	5431	14	Al)ACE-11	14	188	StiLD	GND	Coax				
543	ADAPTER	5431	14	A XACE-45	14	188	SHLO	GND	COAX				
543	ADAPTER	5431	14	A1)ACE-40	14	188	CTR	tsctexc	COAX				
543	acapter	5431	14	A1)ACE-47	14	188	SrLD	GND	Coax				
543	ADAPTER	5431	14	A1XAI:-10	14	188	SHLD	GND	cosx				
543	ADAPTER	5431	14	Alxalz-11	14	188	CTR	TSCTEXO	$\cos x$				
543	ACAPTER	5431	14	A1xal2-12	14	188	SHLD	GND	$\cos x$				
643	GDAPTER	5431	14	A1xA1z-46	14	188	SHLD	GND	cosax				
543	ADAPTER	5431	14	A1xA1z-47	14	188	CTR	tsctexo	coax				
543	ADAPTER	5431	14	A1 XA12-48	14	188	SHLC	GND	Coax				
544	ADAPTER	544	14	AlXACE- 21	14	188	SHLC	GND	$\cos x$				
544	ADAPTER	5441	14	Al XACE-22	14	188	CTR	T45M1X	coax				
S44	ADAPTER	5441	14	AlXACE-23	14	188	SHLD	GNO	cosax				
544	ACAPTER	544	14	AIXACE-57	14	188		GNO	cosix				
546	ADAPTER	5441	14	AI YACP 58	14	188	CTR	T45M1X	coax				
546	ACAPTER	5441	14	A1×ACE-59	14	188	SHLD	GNO	cosix				
544	ADAPTER	5441	14	AlXAIC-C8	14	188	SHLD	GND	$\cos x$				
544	ADAPTER	5441	14	Alxalo-cs	14	188	CTR	T4SM1X	cosx				
544	ADAPTER	544	14	A1× $10-10$	14	188	SHLD	GND	$\cos x$				
544	ACAPTER	5441	14	Alxalc-44	14	188	SHLO	GNO	coax				
544	AOAPTER	544	14	A $1 \times A \mid C-45$	14	188	C 18	14541x	COAX				
544	ADAPTER	544	14	Alxalo-46	14	188	SHLD	GND	$\cos x$				
545	ADAPTER	5451	14		14	188	SHLD	GNO	$\cos x$				
545	ACAPTER	5451	14	A P A C2-Cs	14	128	CTR	T45MA	ccax				
545	ADAPTER	545	14	A1XAC2-09	14	188	SHLD	GNU	cosax				
545	ACAPTER	545	14	A1xACz-43	14	188	SHLD	GNO	ccax				
545	AOAPTER	5451	14	Alxacz-44	14	188	C 18	T45MA	\cos				
545	ADAPTER	5451	14	$\triangle 1 \times 142-45$	14	188	ShLD	GNu	cosx				

(SYNTH \& BIT SYNC)
SIZE COCE IDENT NC.
REV
HIGHEST WIRE MUMEER IS 1070 a ecces
SM-A-759628
F

1 SYNTHE BIT SYNC I
SILE COCE IDENT NO.
HIGHEST WIRE NUMEER IS ICTC A 8COE3
$5: 4-A-75+528$
REV

SHEST

Change 1 B-7

$\begin{aligned} & \text { WIRE } \\ & \text { NC. } \end{aligned}$	FFCM			T0		COLOR		REF NODE	$\begin{aligned} & \mathbf{N} \\ & \mathbf{0} \\ & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	REMARKS	$R$$E$$V$
	ENO		RM	EAC	TERM		TEM				
502	ACAPTER	9C2	14	A 2xale-31	14	188	SHLC	GND	COAX		
902	AOAPTER	902	14	A $2 \times A 18-65$	14	188	SHLD	GNO	COAX		8
902	ADAPTER	902	14	A2XA1E-Et	14	188	CTR	R45MVCO	CCAX		8
502	ADAPTER	902	14	A $2 \times 118-67$	14	188	StLO	GNO	CoAX		
903	ACAPTER	903	14	AEXA1¢-C2	14	188	SHLD	GND	COAX		
503	ADAPTER	9 C ?	14	A 2×4150	14	188	C TR	RM1XO	CCAX		
903	ADAPTER	903	14	A $2 \times A^{15}$ - $C 4$	14	188	SHLD	GND	coax		
903	$\triangle C A P T E R$	903	14	A $2 \times \Delta 15-38$	14	188	SHLC	GND	COAX		
903	ADAPTER	903	14	A $2 \times 815-39$	14	188	CTR	RMIXO	$\cos x$		
503	ACAPTER	902	14	A $2 \times$ A15-40	14	188	SHLD	GNO	COAX		
903	ACAPTER	903	14	A $2 \times 421-\mathrm{C6}$	14	188	SHLO	GNO	CCAX		
903	AOAPTER	903	14	A $2 \times \pm$-1-C7	14	188	CTR	RM 1×0	coax		
903	ALAPTER	903	14	A $2 \times 121-\mathrm{C}$	14	188	SHLD	GAD	coax		
503	ADAPTER	903	14	A $2 \times 4=1-42$	14	188	SHLD	GNO	coax		
903	ACAPTER	$9 C 3$	14	- $2 \times 121-43$	14	188	CTR	RMIXO	cosx		
503	ACAPTER	903	14	A $2 \times 4 \overline{1-44}$	14	188	SrLD	GNO	$\cos x$		
904	ADAPTER	904	14	A $2 \times \pm 15-C 8$	14	188	SHLD	GNO	Coax		
504	ACAPTER	SC4	14	A2 $\times 1.15-C 9$	14	188	CTR	R45M1X	$\cos x$		
904	AOAPTER	904	14	A $2 \times 41 \leq-10$	14	188	SHLD	GND	coax		
904	ADAPTER	SC4	14	A $2 \times-15-44$	14	188	StLO	GND	COAX		
904	\triangle DAPTER	$9 \mathrm{C4}$	14	A $2 \times 115-45$	14	128	CTR	R45M1X	coax		
904	$\triangle D A P T E R$	904	14	A $2 \times A 15-46$	14	188	SHLD	GNO	coax		
904	ADAPTER	$9 c^{4}$	14	A $2 \times 416-21$	14	188	SHLD	GND	ccax		
904	ADAPTER	904	14	A $2 \times 416-22$	14	188	CTR	R45M1X	$\cos x$		
904	ADAPTER	904	14	A $2 \times 816-23$	14	188	SHLD	GNO	COAX		
904	ADAPTER	904	14	A2×A16-57	14	188	SHLD	GND	coax		
504	ADAPTER	904	14	A2xale-58	14	188	CTR	R45M1X	$\cos x$		
904	ADAPTER	9 C 4	14	A 2×1 16-59	14	188	SHLD	GND	$\cos x$		
909	ACAPTER	9 Cs	14	A $2 \times A 16-12$	14	188	SHLD	gato	coax		
909	AOAP TER	909	14	A 2 XAIt -13	14	188	CTR	R45MA	$\cos x$		
409	ADAPTER	909	14	A $2 \times$ Alt 14	14	188	SHLC	GNO	COAX		
909	ADAPTER	909	14	A2xAlt-48	14	188	SHLD	GND	CoAx		
S09	AOAPTER	S09	14	A $2 \times \mathrm{Alt-49}$	14	188	CIR	R45MA	Coax		
909	ACAPTER	509	14	A2xalt-50	14	188	SHLD	GND	COAX		
909	$\triangle D A P T E R$	909	14	A $2 \times A=2-C 7$	14	188	SHLD	GNO	$\operatorname{COA} X$		
909	ACAPTER	$9 C 9$	14		14	183	C TR	R45MA	$\cos x$		
909	ADAPTER	Sc9	14	A $2 \times 423-C 9$	14	188	SHLD	GNO	COAX		
509	ADAPTER	909	14	A $2 \times \Delta 2 \mathrm{E}$-43	14	188	SHLD	GND	CCAX		
909	ACAPTER	969	14	A2XA23-44	14	188	CTR	R45MA	$\cos x$		
909	acarter	909	14	A $2 \times 4<3-45$	14	188	SHL	GND	$\cos x$		

I SYNTH E BIT SYVC I
SILE CODE IOENT NO.
REV

Change 1 B-9

(SYNTH E dIT SYNC
SILE COCE JDENT NO.

WIRE	FFCM		T0		COLOR	REF	$\begin{aligned} & N \\ & \mathbf{O} \end{aligned}$		R
NC．	ENO	TERM	ENC	TERM	ITEM	NODE	T	REMARK S	V
							E		
C46	AlJ 03－20	6	AこXAこく－44	6	3 CSCL	R×9－2－4			
E 71	AlJ03－21	6	A $2 \times 124-42$	c	3 CSCL	R×9－2－8			
844	AlJ03－23	6	A $2 \times A \ll 51$	6	$305 C L$	R3－COM			
873	Al」03－24	6	A $2 \times 4=4-05$	6	3 CSCL	R×9－3－1			
E 74	A1J03－25	6	A $2 \times 424-43$	6	30SCL H	RX $5-3-2$			
¢ 75	AlJ03－2t	6	A $2 \times 124-54$	6	30 SOL	R×9－3－4			
876	A1J03－27	6	A $2 \times 12<56$	ϵ	30 SCL	R×9－3－8			
845	AlJ03－22	6	A2×A24－52	c	30 SOL W	R4－CC．4			
877	41J03－34	6	A2XA 24－58	6	3 CSCL W	R×9－4－1			
878	A1JO3－35	6	A2XA24－47	t	30 SOL	R×9－4－2			
879	A1J03－3t	6	A2xa2－10	6	$305 C L$	R×9－4－4			
880	A1J03－37	6	A $2 \times 124-22$	E	30 SCL	R×9－4－8			
1 C 47	A1×AO1－01	6	A1JC1－16	6	30SCL 8K	GNO			8
3	Alxal－Cl	11	Bus－3	11	BLS	GND			
8	A1×AO1－C2	11	Bls－E	11	eus	＋5VDC			
626	A1×AO1－C3	6	A1 XAC2－65	t	30 SCL 6	TXPD3－1			
22	AIXAOL－C5	6	A2JO1－24	6	3CSCL	1×9－3－1			
¢ 75	A1xAOL－CE	6	A1xac2－69	6	30 SCL	1XPD2－8			
C＞3	$A 1 \times 101-C 7$	6	A1 XAC2－32	6	30 SCL	1×PD2－2			
19	A $1 \times A C l-C 8$	6	A2J01－19	6	3 CSCL	1×9－2－2			
t 24	A1 $\times 101-\mathrm{Cs}$	6	A1）AC2－68	t	30 SCL	1XPO2－4			
30	Alxal－10	6	A2JO1－36	6	30 SCL W	1×9－4－4			
621	A1 \times AOL－11	6	A1XAC $=-60$	t	3 OSCL W	IXPO4－2			
5 A2	A1×AOL－12	6	AIXAC2－33	ϵ	30 SCL	ILDPGM			
¢ 28	Alxacl－13	6	A1xAC2－ 66	t	$305 C L$	TXPO3－4			
6	A1×AO1－14	6	A2J01－06	t	3 CSCL W	TO－COM			
12	A1×AOL－IS	6	A2JCl－12	6	30 SOL W	11－COM			
633	A1 $\times 402-21$	6	AlxaOこ－ 61	ϵ	3 CSCL W	$1 \times P \mathrm{CH}-8$			
31	A1×A01－22	6	A2JC1－37	6	30 SOL	T×9－4－8			
17	A1×A01－23	6	A2JC1－17	ϵ	30 SCL h	T2－CCM			
611	A1×A01－24	6	A1×ACE－12	6	3 CSCL W	1×M94			
639	A1×AOL－25	6	A2JC1－C8	6	30 SCL	1×9－0－2			
615	A1xA01－26	6	AIXAC＝－14	ϵ	3 CSCL W	1×P00－2			
9	A1xa01－27	6	A2 J01－09	t	30 SCL W	1 \times 9－0－4			
619	$\Delta 1 \times \Delta 01-28$	6	Alxac $2-63$	6	30 SCL	TXPOL－2			
635	A1×AOL－2S	6	A 1 X ACz－23	t	30 SCL	TXPOS－2			
14	AIXAOL－ 20	6	A2JO1－14	ϵ	30501	1×7－1－2			
614	A1×AOL－2	6	A1XAC2－57	6	30 SCL \quad W	1XPDO－1			
621	AIXAOL－32	6	A1 XAC 2－62	ϵ	3 CSCL W	1×PO1－8			
618	A1×001－3	6	A1）${ }^{\text {c }}$（2－2E	6	30 SCL	TXPO1－1			

SIZE CCDE IDENT NO．
REV
F

$\begin{aligned} & W I R E \\ & \text { AO. } \end{aligned}$	END FRCM	IERM	EAC	10	TERM	$\begin{gathered} \text { COLOR } \\ \text { ITEN } \end{gathered}$	REF NODE			
								1	REMARKS	v
								E		
E34	A1×401-E5	6	A1×AC2-59		6	305CL W	TXPO5-1			
	A1XA01-27	11	BLS- ${ }^{\text {a }}$		11	BUS	GND			
8	A1xAOL-38	11	BLS-		11	Bus	+5VDC			
t22	A1xal-39	6	A1XAC2-67		ϵ	3 CSCL	TXPO2-1			
18	A1×A01-41	6	A2JC1-18		c	2OSOL W	1×9-2-1			
26	A1xal-42	6	A2JC1-21		6	30SCL W	1×9-2-8			
23	A1xA01-43	6	A2JC1-25		t	3 CSCL -	1×9-3-2			
20	A1xa01-44	6	$\triangle 2 \mathrm{JCl}-2 \mathrm{C}$		6	30 SCL b	1x9-2-4			
627	$41 \times 101-45$	6	$\triangle 1 \times A O=30$		t	3CSCL W	1XPD $3-2$			
613	A1xA01-4t	6	A $1 \times \Delta C \leq-11$		ϵ	3050 L	TXMXI			
29	A1×A01-47	6	A2JC1-35		6	$305 C L$	1×9-4-2			
632	A1XA01-4F	6	A1xAC2-25		t	3 CSCL W	TXPD4-4			
21	AlxaO1-!	6	A2JC1-23		6	30 SCL W	13-CCM			
27	A1 \times A01-: 2	6	A2JO1-33		6	30SCL W	14-CDM			
24		6	A2JC1-26		6	30SCL W	TX5-3-4			
629	$41 \times 101-55$	6	A1xAC2-31		t	2 CSCL ¢	7×PD 3-8			
25	Al×AO1-56	6	A2J01-27		6	3 CSCL h	1×9-3-8			
630	AlXAO1-57	6	A 1 \times ¢02-24		t	3 CSCL W	1×PD4-1			
28	A1XAOL-58	6	A2JCl-34		ϵ	30 SCL \quad -	1×9-4-1			
610	A1XAOL-5	6	A $1 \times 1 C 5-15$		ϵ	3 CSCL h	1X.4X8			
612	A1XAOL-EC	6	A1)ACS-14		ϵ	$305 C L$	TXM×2			
636	A1XAOL-E	6	A1×AC2-58		6	30 SCL W	TXPDS-4			
t16	AIXAOL-E2	6	A $1 \times \Delta C=15$		t	3 CSCL W	TXPOO-4			
15	A1xAOL-63	6	A2JCJ-15		t	3csol h	1×9-1-4			
620	AlXADI-E4	6	A1xA02-27		t	30 SCL h	TXPO1-4			
7	alxalotes	6	A2J01-c7		t	zOSCL W	TX9-0-1			
10	A1XAOL-6t	6	A2JC1-10		6	30SCL	1×9-0-8			
617	AIXAOL-ET	6	A1XACz-16		E	3CSCL	1XP00-8			
16	Al×AOL-68	6	A) JCi-16		6	30 SCL W	TX ¢-1-8			
13	AIXAOL-E9	6	A 2J01-13		ϵ	30 SCL	1X9-1-1			
637	A1×A01-71	6	A 1 xac z-22		t	3CSCL h	TXPO5-8			
3	A1×AO2-C1	11	BUS -3		11	8us	GND			
8	A1xa02-C2	11	ELS-		11	BLS	+5VDC			
575	alxa02-c3	6	A2JC1-03		t	30SCL W	T10-100K			
1010	Alxacz-cs	6	A2JC1-C5		ϵ	30sol	T100K-1m			B
$1 \mathrm{cl1}$	A $1 \times \mathrm{aO} 02-\mathrm{ct}$	6	AくいCl-C4		ϵ	305CL h	T1-10:4			8
545*	A1xa02-C7	14	ACAFTER	545	14	188 SHLD	GNO	$\cos x$		
$545 *$	A1XAC2-C8	14	ACAPTER	545	14	183 CTR	T45MA	coax		
S45*	A1×A02-Cs	14	ACAFTER	545	14	188 StLD	GND	cosax		
615	A1×402-14	6	A $1 \times$ Cl-26		6	30 SCL h	TXPDO-2			

(SYNTH E BIT SYVC I
SIZE CODE IDENT NO.
highest hire numeer is icto a
8COE 3
SM-A-757628
REV

Change 1 B-13

WIRE FASP	TERM	Enc io	10	TERM	$\begin{gathered} \text { CCLOR } \\ \text { ITEM } \end{gathered}$	REF NODE	$\begin{aligned} & N \\ & \mathbf{N} \\ & T \\ & E \end{aligned}$	RE MARK S	$R$$\mathbf{E}$$\mathbf{V}$
616**1×002-15	6	A1 $\times 101-62$		6	30 SCL \quad \%	TXPDO-4			
617*A1 XA 02-16	6	$A \perp \times A C 1-67$		t	$30 S C L$	TXPDO-8			
637*A1XA02-22	6	A1×A01-71		ϵ	3 CSCL W	TXPO5-8			
635*A1×A02-23	6	A1XAO1-29		t	$3 \mathrm{csct} W$	TXPDS-2			
630* $11 \times 102-24$	6	A1XAC1-57		ϵ	$30 \leq C L$	1XP04-1			
632*A1×A02-25	6	A $1 \times 4 \mathrm{Cl}$-48		6	30 SCL	TXPC4-4			
t20-A1XA02-27	6	AIXACI-E4		ϵ	30 SCL	TXPO1-4			
618*A1×A02-28	6	A1×AC1-33		6	$305 C L$	TXPD1-1			
627*A1 XA 02-3C	8	A $1 \times A C 1-45$		ϵ	3 CSCL H	1×P03-2			
679*A1×A02-31	6	A1XAC1-55		6	$30 \leq C L$	TXPC3-3			
c23**1×A02-玉	6	A $1 \times \mathrm{Cl}$ - 7		6	305 CL \%	TXPC2-2			
582*A1×402-23	6	A $1 \times A C 1-12$		ϵ	30 SCL W	TLDPGM			
581 A1×A02-25	6	Alxact-2l		6	30SCL W	TSAMP			
3 A1xa02-37	11	もlS-?		11	Bus	GND			
8 A1XA02-3E	11			11	Bus	+5VOC			
576 A1×402-39	6	$A_{1} \times A C E-27$		6	$30 S C L$	T10100kt			
578 A X A 02-41	6	$A 1 \times A C 5-30$		6	$30 S C L$	T100K1MT			
580 A1XA02-42	6	A1 \times C ${ }^{\text {c-31 }}$		c	30 SCL W	T1-1 Jmi			
545*A1×102-43	14	$\triangle C A P T E R$	545	14	188 SHLD	GNO	$\cos x$		
545*A1×402-44	14	ACAPTER	545	14	188 CTR	145ma	cuax		
545**1× $002-45$	14	ACAFIER	545	14	188 ShtC	GNO	CoAX		
614*A1 XA 02-57	6	A $1 \times A C 1-31$		ϵ	30SCL W	1XPCO-1			
636*A1×A02-5	6	AIXACJ-61		ϵ	$305 C L W$	TXPDS-4			
634*A1 $\times 102-59$	6	A1XAC $1-35$		6	$30 \leq C L$	TXPO5-1			
631*A1×402-6C	6	A1×A01-11		ε	3CSCL W	TXPO4-2			
633*A1 \times A02- 61	6	A1×AC1-21		ϵ	$305 C L H$	TXP04-8			
621*A1XA02-62	6	A1XAO1-32		6	30SCL W	TXPD1-8			
619*A1×A02-63	6	A1xA01-28		t	30SCL W	1XPO1-2			
676*A1 $\times 102-65$	6	A1xA01-33		ϵ	30SCL W	1XPO3-1			
C28*A1XA02-66	6	A1XA01-13		ϵ	3 CSCL	TXPD3-4			
	6	A1XAC 1-39		t	3 Csct W	1Xf02-1			
624*A1×A02-EE	6	A1XAC1-C?		6	30 SCL	TXP02-4			
(25*ALXAO2-EC	6	Alxal-C6		ϵ	3 CSCL H	TXPO2-8			
8 A1XAO3-C2	11	8Ls-¢		11	EUS	-5VOC			
¢68 A1×AC3-C4	11	bls-cte		11	els	-5VDC			B
$\leq 10 * A 1 \times A C 3-C 6$	14	ACAFTER	510	14	188 SHLO	GNO	$\operatorname{Cos} x$		
510*A1×A03-C7	14	ACAP TER	510	14	188 CTR	TMIXO	coax		
$510 * A 1 \times 103-C 8$	14	ACAPTER	510	14	188 SHLD	GND	COAX		
512 A1XA03-14	6	A1XACS-28		E	30 SCL W	TMIXD	TW2-512		
S 12 A $1 \times 103-15$	6	AlXACS-25		E	3 CSCL EK	TMIXOGND	TW2-512		

I SYNTH \＆BIT SYNC 1
sIIE CCCE IOERT NO．
REV
HIGHESTMIRE NUMBEK IS ICTC A RCこE3 S．イーエー759628 F

Change 1 B－15

END ${ }^{\text {FRCM }}$	TERM	TC		$\begin{aligned} & \text { COLOR } \\ & \text { ITEP } \end{aligned}$	REFNODE			$\begin{aligned} & R \\ & E \end{aligned}$
		ENC	TERM			T	REMARKS	
						E		
613*A1×05-11	6	A1 \times AC1-46	6	30SCL W	TXMX 1			
576 $11 \times 405-11$	6	A1XA1-11	6	$3 \mathrm{CSCL} W$	IXMXI			
611*A1 XA05-12	6	A1XAC1-24	t	30 SCL W	1X:4×4			
$528 \wedge 1 \times 105-12$	6	A1 MA14-12	6	30 SOL W	TXMX4			
612*A1XAU5-14	6	A1× AO1-60 $^{\text {a }}$	ϵ	3 cSCL W	TXMX2			
S 27 AlXAC5-14	6	A1xal 1 -14	ϵ	$3 \mathrm{CSCL} W$	TXMX2			
610*A1×A05-15	6	A1×AC1-59	6	$3050 L$	TXMX8			
¢ 29 A1XAC5-15	6	$A 1 \times A 1-15$	ϵ	3 CSCL W	TXMX8			
525 A1XA05-1t	6	A $2 \times A C \in-53$	t	$305 C L H$	1BS2RC			
51 A1XA05-17	11	RUS-51	11	HLS	GNO			B
52 A1×A05-18	11	BLS-5 2	11	8LS	GND			8
55 A1XA05-19	11	PLS-65	11	Bus	GNO			8
53 A1XACS-<0	11	BUS-53	11	8LS	GND			8
1009 A1XA05-23	6	A1XACE-22	ϵ	3050L W	TDUMP			B
$576 * A 1 \times 405-27$	6	A1 XAC2-39	ϵ	30 SCL h	T10100KT			
570 11 XA05- 27	6	A1xA14-27	6	30SCL	T1U100KT			
512*A1×A05-28	6	A1×AC3-14	ϵ	30SCL W	TM1X0	T-12-512		
$512 * 41 \times 405-25$	6	$\triangle 1 \times A C 3-15$	6	3OSCL EK	TMIXDGNO	TW2-512		
578*A1×A05-3C	6	$\triangle 1 \times A C=-41$	t	3 CSCL H	TluOKIMT			
521 A1xA05-50	6	AIXA14-30	t	30 SCL h	T1CCK1MT			
580*A1×A05-ミ1	6	A $1 \times 4 \mathrm{C}-42$	t	30 SCL m	T1-10MT			
522 A $1 \times 405-31$	6	ALXA14-31	c	30 SCL W	T1-10M T			
2 IR Alxac5-3E	11	BLS-218	11	els	+15VOC			B
8 AIXA05- 58	11	BuS-	11	8L5	+5VDC			
51 AIXAC5-53	11	els-s]	11	Bus	GND			8
$52 \pm 1 \times 405-54$	11	BLS-62	11	BuS	GNO			B
$55 \triangle 1 \times \Delta 05-55$	11	BUS-55	11	BUS	GND			8
53 AlXAO5-56	11	els-53	11	Bus	GND			B
318 A1×A05-7i	11	8uS-218	11	8LS	+15VOC			8
8 A1×A06-C2	11	ELS-F	11	gus	+5VOC			
51 A $1 \times 406-17$	11	BLS-5	11	8LS	GND			8
52 A $1 \times 406-18$	11	8U5-52	11	BLS	CND			8
$5541 \times 406-15$	11	RUS-s.	11	gus	GND			8
$5311 \times 406-20$	11	BLS-5?	11	BLS	GND			8
SRI*AIXAC6-21	6	$\triangle 1 \times A C=35$	6	30scl k	TS.AMP			
534 A1XAC6-21	6	AIXACt-23	t	30SCL	TSAMP			
$1 \mathrm{CCO} A 1 \times \triangle C 6-22$	6	AIXACS-23	6	30SOL	TDUMP			8
634*A1 1 (ACE-23	6	Alxact 21	E	$305 C l$	TSAMP			
	6	ALJC1-28	6	30SCL W	TSYNTST			
536*A1 $\times 106-29$	14	ACAPTfR	E3t 14	188 SHLD	GNO	cas		

[^1]

Change 1 B-17

SI2E CODE IDENTNO. SYNTHE BIT SYNC I REV

Change 1 B-19

(SYNTH E ©IT SYNC)
SIZE CCCE IOEAT NO.
HIGHFST WIRF NUM BER IS IC7C A 8COE3
SM-A-155028
REV
F

Change 1 B-21

$\begin{aligned} & \text { WIRE } \\ & \text { NC. } \end{aligned}$	END ${ }^{\text {FRCM }}$	TERM EAC TO							$\begin{aligned} & R \\ & E \\ & V \end{aligned}$
				TERM	ITEM	NODE	T	REMARKS	
							E		
495	A1 $\times 1515$	6	AlXA1E-21	6	3 CSCL m	[ACCLK			
$501 *$	A1xA15-2C	6	A1XA11-26	ϵ	$30 S C L 8 K$	18SBGNO	162-501		
501 *	A1xA15-28	6	A1XA11-27	t	3 CSCL	IBSBSSC	TW2-501		
75	A1x15-34	11	els- 75	11	BUS	-15VOC			
318	41xal5-36	11	BLS-318	11	8LS	-15VOC			
57	A1xa15-37	11	BLS-57	11	eus	GND			B
34	Alxal5-38	11	- LS- 34^{4}	11	gus	+5VDC			
75	A1xa15-70	11	ELS-i5	11	Els	-15VDC			B
218	A1×A15-72	11	ALS-218	11	BLS	+15VOC			
57	A1×a16-C1	11	9LS-57	11	8LS	GNO			
34	A1XA16-C2	11	-15-34	11	305	+5VOC			
483 *	A1 $\times 116-C 7$	6	AlXAIS-C8	6	30 SCL \quad.	TCAC-3			
486*	AlXA16-CE	6	A1×AI 5-C6	t	3CSCL W	TCAC-1			
$484 *$	-1xa16-11	6	A1XAIE-C9	6	30 SCL ω	TCAC-4			
485*	- $1 \times 416-14$	6	AlxAIE-10	t	3 CSCL W	TCAC-5			
471	A1xale-15	6	Alxale 16	t	3 CSCL W	LFMSBT			
471	A1×A16-16	6	AIXA1E-15	6	30 SOL	LFMSBT			
470	Alxale-It	6	A1×A1t-17	6	3 CSCL N	LFMSBT			
470 *	A1xal6-17	6	AlXA $16-16$	6	$305 C L$	LFMSAT			
469	A1xa16-17	6	A1xal7-23	6	3CSCL h	LFMSBT			
468	Alxale-1F	6	A1x:17-24	ϵ	$3 \mathrm{CSCL} W$	LF TRANT			
482*	A1×a16-20	6	A1 \times A15-C7	6	30 SCL W	TOAC-2			
472	alxal6-24	6	Alxal7-36	6	3 CSCL	LPFCLKT			
481*	A1xa16-3C	6	A1xA15-11	t	3 CSCL	TCAC-6			
455*	-1xal6-31	6	A1 $\mathrm{XA}^{1} \leq-15$	6	30 SCL W	cacclk			
467	A1xale- ${ }^{\text {a }}$	6	A1xal7-35	6	$30 \leq C L$	[acclk			
480 *	Alxale- 33	6	AlXAIE-13	t	$30 S C L$	TCAC-7			
57	11xa16-37	11	8us-s:	11	BLS	GNC			
34	A1xal6-38	11	RLS-2 4	11	BuS	+5VOC			
477	A1xal6-E6	6	A1xal7-14	6	30 SCL h	LFUNDRT			
479*	A1×A16-EA	ϵ	A 1×41512	t	$3 \mathrm{CSCL} h$	TCAC-3			
478	Alxalb-ES	6	A1xal7-25	ϵ	20 SCL W	LFCVERC			
57	1XA17-C1	11	Bus-st	11	BLS	GNC			
34	-1xal7-C2	11	SLS-34	11	8し5	+5VOC			
228	A1× 1 17-C8	6	A2XAC 7-23	6	3 CsCl H	TESOATT			
90	A1×A17-Cs	6	A 2×1 Ce-42	6	30 SCL m	ToSDatc			
687	A1XA17-12	6	A 2×1 C4-26	E	$30 S C L$	TXBSDT			
$477 *$	A1xa17-14	6	AlMAIEEG	6	$30 S C L$	LFUNDRT			
$574 *$	A1×A17-15	6	AlXACS-CE	t	3 CSCL W	TXSYARC			
452	-1xal7-15	6	A2XACt-C9	6	$305 C L$	TXSYARC			

(SYNTH E SIT SYNC)
SIZE CCDE IDENT AC.
R
\mathbf{E}
V

B

8

REV

$\begin{aligned} & \text { WIRE } \\ & \text { AO. } \end{aligned}$	END ${ }^{\text {FRTM }}$	TERM	T0		$\begin{gathered} \text { CCLCR } \\ 1 \text { TEM } \end{gathered}$	REF NODE			RE
			EAC	TER			T	REMARKS	
							E		
466	A1 XA17－17	6	A $2 \times 10-2 \varepsilon$	6	3CSCL	TBSLOLC			
469＊	FA1 XA17－23	6	A1XA1E17	6	3 CSCL W	LFMSBT			
468＊	＊${ }^{1} \times 1 \times 17-24$	6	AIXAIE－18	6	30 SCL h	Lfirant			
478 ＊	＊ $1 \times A 17-25$	6	AlXAIt－E9	6	305 CL h	LFOVERC			
¢ 32 ＊	＊ $11 \times 817-34$	6	A1XACs－C6	t	30SCL h	TXSYNRT			
451	A1xa17－24	6	A 2）AC4－24	6	30SCL	TXSYNRT			
467 ＊	－ 4×1 17－35	6	$\triangle 1 \times \Delta 1 t-31$	6	30 SCL	CACCLK			
460	A1XA17－25	6	A $2 \times A C 7-15$	c	zOSCL W	cacclk			
417＊	－ $1 \times 417-3 t$	6	A $1 \times$ Alt－24	6	30SCL	LPFCLK			
57	A1×A17－37	11	ALS－57	11	BLS	GNO			
34	A 1×17－ 38	11	8LS－34	11	Bus	＋5VOC			
1049	A1× $\mathrm{A}^{2} 1-\mathrm{C} 2$	11	BUS－1449	11	BLS	＋5VOC			8
106	A1XA21－c4	11	PLS－1C6	11	eus	－5VDC			
566 ＊	． $11 \times \pm 21-16$	6	Alxalfocs	6	$305 C L$	IXSYNTR			
A1	A1xa21－17	11	BL －$^{\text {1 }}$	11	eus	GNO			B
86	A1XA21－1E	11	BLs－をt	11	Bus	GND			
89	A1x $121-19$	11	AUS－f	11	ELS	GND			8
385	A1×A21－2C	6	A1×Aご－215	¢	26SCL BX	GND	SHL O	PGT－384，1N	
82	A1×A21－＜0	11	BUS－\＆2	11	ElS	GNO			B
384	A1xazl－El	6	A $2 \mathrm{JC}=-15$	t	2tSCL	INTCLK	STb2	－394	B
395＊A1XA21－215		9	A1xaz $1-20$	t	26SCL BK	GNO	SHLO PGT－384，INTCLKS		
384	A1xa21－21s	9	A2J02－15s	9	ERAID SH	GND	STM2	－384	
384		6	AこうOz－16	t	$265 C L$ EK	INTCLK	STH2	－384	B
386	A1xa21－2？	6	A 2×1 C7－41	E	30 SCL W	INTCLKT			
1 C 5	A1×A21－26	6	A $2 \times A C 2-C 7$	6	3 CSCL h	txcata			F
1056	A1XA21－31	6	A $2 \times A C 2-32$	t	305CL	NR 20R			F
1057	$A 1 \times A 21-32$	6	A2 XAC 2－30	6	30SCL	ARZOR－			F
$1 C 49$	－1xat－28	11	BUS－1C49	11	BLS	＋5VOC			8
106	A1xal－4C	11	BLS－1C6	11	aus	－5VDC			
AI	41xa21－63	11		11	ELS	CND			8
86	－1xal－¢ 4	11	BUS－\＆t	11	BLS	GNO			B
89	Alxali－s	11		11	8us	GNO			8
B）	A1×121－56	11	8LS－8 2	11	BLS	GND			8
1049	－1xa22－C2	11	BLS 1C49	11	BLS	＋5VOC			B
106	A1×422－C4	11	EUS－1C6	11	els	－5VDC			
378	11×122－16	ϵ				catcutt			
81	A1×A22－17	11	BLS－81	11	BLS	GNO			日
R6	A1xa22－18	11	BL S－ft	11	8LS	GND			A
89	A1xa22－19	11	BUS－f	11	8LS	GNO			B
816	A1xa22－：0	7	A1xa22－22s	9	26 SCL 8K	GND	SHLO	PGT－315	a
			SIZE CODE IUENT NO．				YNTH	SIT SYNC	
highest wire num		EER I	51070		ecce 3			4－1－759628	

$\begin{gathered} \text { WIRE } \\ \text { NO. } \end{gathered}$	END ${ }^{\text {FRCM }}$	TERM	EAC TO	TERM	$\begin{gathered} \text { CCLCR } \\ \text { ITEM } \end{gathered}$	REF NODE	$\begin{array}{ll} \mathbf{N} & \\ 0 & \\ \mathbf{T} & \text { REMARKS } \\ \mathbf{E} & \end{array}$	$\begin{aligned} & R \\ & \mathbf{E} \\ & \mathbf{V} \end{aligned}$
82	$A 1 \times A 2 Z-20$	11	BuS－E2	11	ElS	GNO		8
815	A1xA22－21	6	－2JCz－04	ϵ	26SCL BK	ALTCUT－	STW2－815	B
815	A1×A22－22	6	A2JCz－C3	ϵ	26 SCL	AL TOUT－	STH2－815	e
816	A1× 1 A22－223	9	A1xA＝2－20	7	$2 \in S C L$ EK	GND	S＋LD PGT－815	0
815	A1×A22－223	9	A2JCz－03s	9	ERAIC SH	GND	STH2－815	
230	A1xa22－23	6		6	30SCL m	AlTOUT		
234	A1xa22－25	8	A1×Aこご25	6	$30 \leq C L$	cladut		
233	A1xA22－2t	6	A2XAC 7－32	ϵ	EOSCL W	ALTCLKT		
820	A1xa22－30	6	A1×A22－315	9	$26 \leq C L$ EK	GND	SHLO PGT－374	8
374	A1xa22－31	6	A2Jご－33	ϵ	26SCL	ALTCLK＋	STh2－374	
820	A1xa 22－E1s	9	A1×122－30	t	zESCL $8 \times$	GND	SHLU PGT－374	8
374	A1xA22－31s	9	42JCz－338	9	EaAlO SH	GND	STW2－374	
374	A1xa22－32	6	A2J02－34	ϵ	2ESCL BK	ALTCLK－	Stim－374	
1049	11xa22－38	11	BLS－1C49	11	bls	＋5VDC		8
106	－1xa22－4C	11	8LS－166	11	BLS	－5VDC		
81	A1xa22－53	11	EUs－E1	11	eus	GNO		8
86	Alxa22－54	11	RしS－Et	11	BLS	GHO		8
89	A1XA22－5	11	Pls－8S	11	Bus	gno		8
82	A1xa22－56	11	BUS－6 2	11	BLS	GNO		B
1049	A1xA23－C2	11	BUS－1C4S	11	BLS	＋5VOC		8
106	A1×423－C4	11	BLs－1C6	11	Eus	－5 VOC		
378＊	A1×A23－16	6	A1）A22－16	6	30 SCL	catgut		
364	A1xA23－16	6	a 2 Xace－t 6	t	3 CSCL	catcut		
81	A1xa23－17	11	BUS－E1	11	Bus	GND		8
86	A1 XA 23－18	11	BUS－Et	11	els	GND		θ
A9	A1xa23－15	11	PLC－ES	11	8us	GND		8
A36	A1xa23－20	7	AlxA23－225	9	26 SCL BK	CND	SHLD PGT－935	B
8 ？	11xA23－2C	11	BLS－E2	11	8LS	GND		8
835	A1xa23－21	6	－2JOE－C6	ϵ	2tSCL Bx	catout－	STM2－835	8
835	A1×A23－22	6	－2J0ごC5	E	2ESCL \quad ．	catcut＋	STW2－835	8
A3n	A1×023－225	9	$1 \times A=20$	7	26 SCL EK	GNO	SHCO PGT－335	E
835	Alxa23－22s	9	－ 2 J02－055	9	ERAID SH	GNU	STW2－835	
220	A1×A73－23	6	A $2 \times A C 7-24$	t	3 CSCL \％	bufcuti		
234＊	A1xa23－25	6	Alxa＜z－25	t	$30 S C L$	ClxCut		
365	A1xa23－25	6	A2）ACE－5a	t	$305 C L$	clkcutt		
367	A1×423－2t	6	A2XAS i－35	6	$3 \mathrm{CSCL} h$	eckcutt		
840	Alxal3－30	5	A1×Aこご315	¢	26 SCL EK	GNO	SHLO PGT－339	8
839	A1xa23－ミ1	6	AくJCz－13	t	26 SCL	CLKCUT＋	SIW2－339	9
P40	A1xA23－315	9	A1xAここ－3C	ϵ	2ESCL Ex	GND	SHLJ PGT－839	E
839	A1xa 3 3－ 15	5	A2JC2－13s	9	ERAID St	GND	STW2－339	
		SILE COCE			IDENT NO	（ SYVTH © BIT SYMC ）		REV
HISHF	St wire num	2ER	151670		2cce3		SM－A－759628	F

Change 1 B-25

SI2E CODE IDENT NC．
（ SYNTH E BIT SY JC 1

A ecce 3
SM－A－159628

Change 1 B－26

$\begin{aligned} & \text { WIRE } \\ & \text { AD. } \end{aligned}$	END ${ }^{\text {FFCP }}$	IERM	TO		$\begin{gathered} \text { CCLCR } \\ \text { ITEM } \end{gathered}$	REF NODE	$\begin{aligned} & N \\ & \mathbf{N} \\ & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	R$\mathbf{E}$$V$
			Enc ter	TER				
79	12.102-32	6	A $2 \mathrm{JOz-3Cs}$	9	26 SCL EK	CND	SHLD PGT 675	
374*	A2JC2-33	6	Alxaci-31	t	26SCL w	Al TCLK ${ }^{\text {+ }}$	STW2-374	
314*	A2J02-3?	9	A1xacz-31:	5	ERAID Sh.	civo	STW2-374	
	22Jo2-325	9	A2J0こ-31	t	26 SCL BR	GND	SHLD PGT 374	
374*	42J02-34	t	A1xaz-32	6	26 SCL EX	ALTCLK-	STH2-374	
561	12J02-35	6	A 2×4 c $3-22$	t	30SCL	1CFCulst	142-561	B
561	42J02-3t	6	A 2×10024	t	30SCL EK	$1 \mathrm{CFCU7} 5$	1W2-961	8
1058	42J02-37	6	A2XAC2-26	t	3 CSOL W	EALOUT+	7w2-1253	F
1058	42J02-3E	6	A 2×0 c -25	ϵ	3 CSCL ek	eal Out -	TH2-1053	F
670	A2Juz 39	6	A 2×14 (4-30	6	26 SCL W	INSTD*	STW2-673	
	42J02-25s	5	A $2 \mathrm{JC} 2-32$	t	2ESCL $\mathrm{BK}^{\text {c }}$	gno	SHLO PGT $6 T O$	
670	42J02-35	8	A2xact-308	8	ERAIO SH	GND	STW2-670	
67.5	-2J02-4C	6	A 2×1 C4-28	ϵ	cescl bx	INSTO-	STW2-670	
293*		6	A2JC1-11	t	$265 C L$ Ek	GND		
<89*	A2J03-C1	6	A 2 Joz- 1	t	2ESCL BK	GND		
712	A2J03-C5	6	A 2×18 ¢- 22	t	30SCL	SGNTD*	Th2-712	8
712	12J03-C6	6	A $2 \times A C E-23$	6	30 SOL BK	SGNTD-	TW2-712	B
751	A2103-Ci	6	A 2×1 C5-63	t	3 CSCL	2RCKFE +	TW2-751	B
751	A2J03-C8	6	A 2×1 C $5-69$	6	30SCL Ex	2RCKFE-	TW2-75I	B
724	A2J03-12	6	A 2 YAC 5-58	ϵ	3CSCL	RCKFD+	1w2-724	8
724	A2J03-14	6	A $2 \times A C \leq-59$	t	3CSCL ek	RCKFO-	Tw2-724	8
710	42J03-15	6	A $2 \times A C \leq-48$	6	30502	2RCKTE +	TW2-71J	8
710	A2J03-16	6	A 2×10 - 45	t	3CSCL BK	2 RCKTE-	TW2-71J	e
723	A2J03-17	6	A $2 \times A C E-33$	6	30SCL m	DATFE*	TW2-723	8
723	A2J03-16	6	A $2 \times 10 \leq-34$	c	3 CSCL BK	CATFE-	TW2-123	e
725	A2JC3-23	6	A $2 \times \mathrm{ACSEGl}$	t	3CSCL ${ }^{\text {H }}$	CATFD+	1w2-125	B
725	A2J03-24	6	A2 XAC5-60	t	3OSCL BK	OATFD-	Tw2-725	B
$7 \mathrm{C9}$	-2JC3-25	6	A 2×14 - 56	6	3cscl m	RCKTE+	TM2-769	8
709	-2JC3-2t	6	A $2 \times 10 \leq-57$	ϵ	30SCL EK	gCKTE-	TW2-709	B
¢¢7	A2J03-27	6	\triangle CXACS-11	t	3 CSCL \%	metct	TH2-987	E
¢f7	A2JC3-2E	6	$A E X A C E-12$	t	3CSCL EK	MSATD-	TW2-587	E
736	42J03-33	6	A $2 \times$ AC5-44	t	2oscl ${ }^{\text {a }}$	RCKTD	TW2-736	8
776	AJJ03-34	6	$\triangle 2 X A C \leq-45$	c	3CSCL EK	RCKTD-	TW2-735	8
737	A2JC3-35	6	A2XACS-46	t	305 CL W	2RCKTD*	1\%2-737	B
737	A2J03-36	6	A2XAC5-47	E	2OSCL EK	2RCKTO-	TW2-737	3
711	A2J03-37	ϵ	\triangle - XACs -24	t	$305 C L$	cattet	TW2-711	8
711	A2J03-38	6	A $2 \times A C \leq-25$	t	$20 S C L$ BX	CATTE-	Tw2-711	8
1037*	$\triangle 2 \times A C 1-C 1$	15	ACAPTER 1 C37	715	188 SHLC	CND	Ccax	
1037*	A2×A01-C2	15	ACAPTER 1037	715	188CTR	LOSINB +	cosax	8
1C37*	* $2 \times \Delta 0 \mathrm{t}-\mathrm{C}$?	15	ACAFIER 1037	715	188 SHLC	GND	coax	8

I SYNTH \mathcal{E} ITT SYNC 1
SI2E COEE IDENT NO.

$\begin{aligned} & \text { WIRE } \\ & \text { NO. } \end{aligned}$	ENO FFC\％	TO			$\begin{gathered} \text { CCLCR } \\ \text { ITEM } \end{gathered}$	REF NODE			R
		TERM	EAD T	TERM			1	RE YARKS	
							E		
1 636 ＊ $22 \times 401-C 6$		6 42おCく－25		6	30 SCL $\quad \mathrm{m}$	ICFIN5 $0+$	TW2－1036		8
1036＊A2 XAOL－C7		6	A2J02－26	ϵ	30SCL BK	ICFINS 0－	TH2－1J36		8
1034＊A2×A01－C9		6	A2JOご－ 7	6	30 SCl h	ICFIN75＊	TW2－1734		8
1034＊A2XACI－1C		6	A2J0く－08	ϵ	$305 C L$ EK	ICFIN75－	TW2－1034		8
1060 A $2 \times 401-12$		6	A2×ACZ－C日	t	30SCL W	AR2REC＋			F
	A2×001－15	6	A2xac 2－C9	ϵ	30SCL W	NRIREC－			F
1661 97	A2 $2 \times 401-17$	11	BLSCS 7	11	BUS	GND			B
95	A $\times 101-18$	11	BUS－cs	11	eus	GND			8
${ }_{4} 9$	12x101－15	11	PLS－53	11	els	GND			8
$1 c^{18}$	A2xa01－2C	11	8LS－1C14	11	eus	GNU			8
1033	A $2 \times \Delta 01-22$	6	A2）AC3－32	6	30 SCL	TSTICF			8
$\begin{aligned} & \varsigma 71 * \\ & 570 \end{aligned}$	A2xa01－24	6	42J0l－02	6	3OSCL R	＋5VOC			B
	A2xA01－24	6	A2xAC2－C2	7	3OSCL R	＋5VDC			8
	$\triangle 2 \times 401-25$	6	AlJ01－17	6	30SCL H	ICFRLYE			8
	A2×401－25	6	$A 2 \times \Delta C=11$	ϵ	3 CSCL W	ICFRLY			F
1032	A $2 \times 401-27$	6	د2）AC4－C8		30502 W	ICF2			8
1 C 23	A2XAOL－3 3	6	A2×AC4－C7	6	30 SCL	ICFl			B
76	A2XAOL－24	11	ELS－76	11	BUS	－15VDC			
3161037	$A 2 \times A O 1-2 t$	11	ELS－ 316	11	BLS	＋15VOC			
	1037＊A2×AU1－37	15	ACAPIfR 1037	715	182 SHLC	GND	COAX		8
		15	ACAFYER 1037	715	188 CTR	LCSINB ${ }^{\text {＋}}$	coax		B
1037＊A2×A01－39		15	ACAFIER 1037	715	188 SHLD	GNO	coax		8
97	A2XAO1－53	11	PLS－S 7	11	eus	ENO			8
95	A2XAOL－54	11	RUS－cs	11	BUS	GNO			B
	A2 XAOI－55	11	BLS－S？	11	BLS	GNO			8
1018	A）XAOL－st	11	BLS－1018	11	BUS	GNO			B
76	A2 XAOL－70	11	BUS－7t	11	BUS	－15VOC			
216	A2 2 AC1－72	11	RLS－E1E	11	BL S	＋15VDC			
1 C 69	A2XAO2－C1	6	A2xAC2－17	t	3 CSCL EK	ENO			F
1022＊A2 $\times 402-\mathrm{C} 2$		7	A2JC1－C2	6	$305 C L$ R	＋SVLC	IC F		E
¢ 70＊ $\mathrm{A}_{2} \times \mathrm{ACL}-\mathrm{C} 2$		7	A 2×8 C 1－24	t	3CSCL R	＋ 5 VDC			B
	A $2 \times 402-02$	11	Bls－zs	11	BLS	＋5VDC			
	A2 \times A02－C4	6	A2XAC4－40	6	$305 C L$ G	－5VCC			F
1 CbO	A2xa07－Ce	6	A2XAC 1－12	t	30 SCL W	NR 2 REC＋			F
1 C61＊A2 XA02－C		6	A 2×1 C1－15	6	3CSCL	NR TREC－			F
1063	A $2 \times A C 2-1 C$	6	A 2×14 4－10	t	$3 \mathrm{CSCL} H$	ARICATA			F
1ct2＊	A $2 \times A 02-11$	6	A $2 \times A C 1-25$	t	3CSCL W	ICFRLY			F
1 C 55	A2×A02－12	6	A $2 \times A C 7-11$	ϵ	30SCL W	PNSEQ			F
$1 \mathrm{C66}$	A2xAC2－12	6		6	30SCL W	TEST3			F
1 669 ＊ $2 \times$ A02－17		6	A2）AC2－Cl	6	30SCL BK	GNO			F

（ SYNTH E 3IT SYNC）

SILE CCLE IDENT NO．
REV
HIGHFST \quad IRF AUMBFR IS IC7L A \quad a0こE3
S：1－A－759628

Change 1 B－28

$\begin{aligned} & \text { WIRE } \\ & \text { NC. } \end{aligned}$	END FACM	TERM	EAC ${ }^{\text {do }}$	TERM	$\begin{aligned} & \text { CCLGR } \\ & \text { ITEM } \end{aligned}$	REF NODE	$\begin{aligned} & N \\ & \mathbf{N} \\ & \mathbf{T} \\ & \mathrm{E} \end{aligned}$	REIAARKS	$\begin{aligned} & R \\ & E \\ & V \end{aligned}$
S7	12x－102－17	11	BUS－¢ 7	11	ElS	CND			e
1070	$\triangle 2 \times A C 2-18$	6	A 2×A0ご 27	ϵ	3 OSCL BK	GAD			F
95	A2XA02－18	11	BUS－く5	11	BLS	GNO			B
93	A2XA02－19	11	Qus－c 3	11	BLS	GND			H
1018	$\triangle 2 \times \Delta 02-20$	11	Bus－1C18	11	BLS	GNO			8
1058＊	－ $42 \times 402-$ ct	6	A2JC2－38	6	30 SCL EK	ealcut－	Tw2－105		F
1058	＊${ }^{2} \times 102-2 t$	6	A2J02－37	6	30 SCL 6	ealdut＋	TW2－105		F
1064	A $2 \times 402-27$	6	A2xali－12	t	2csch W	RECDATA			F
1 C59＊	＊ $12 \times \Delta 02-2 \varepsilon$	6	A2JC＝－20	6	30SCL EK	EALIN－	TW2－1053		F
1 CSO	－ $42 \times 402-25$	6	A2JCz－19	t	zOSCL W	ealint	TM2－1059		F
1057＊	$42 \times 402-\geq 0$	6	$\Delta 1 \times 1$－1－32	6	$305 C L$	MR 2DR－			F
1 C 53	A $2 \times 402-31$	6	A $2 \times A C \leq 16$	6	30 SOL m	ICFOR－			F
1056＊	A $2 \times 402-32$	6	A1xAC1－31	t	20Sch w	ARZDR＋			F
1054	A2xAC2－33	6	$42 \times 4 C 3-21$	t	$305 C L$	ICFCR＋			F
76	A2xAC2－34	11	日LS -76	11	BLS	－15VDC			
316	A $2 \times 402-\equiv 6$	11		11	BLS	$+15 \mathrm{VDC}$			
1070＊	A2 $\times 402-37$	6	A2×A02－18	6	30 SCL BK	GNO			F
35	$42 \times 402-38$	11	Els－？ 5	11	elis	$+5 \mathrm{VOC}$			
$1 \mathrm{C68}$	$A 2 \times \Delta 02-4 C$	6	A2）AC4－40	ϵ	30 SCL G	－5VDC			F
97	A2xa02－53	11	BLS－¢ 7	11	BLS	GND			B
55	A 2 Xa 02－54		BLS－¢5	11	els	GNC			8
93	A2×A02－55	11	BLS－5？	11	BUS	GND			B
1018	A $2 \times 4 \mathrm{C} 2-56$	11	PLS－1c18	11	els	END			B
76	－ $2 \times 402-70$	11	bus－ie	11	Bus	－13VDC			
316	A2xac2－72	11	BLS－E16	11	815	－15VOC			
35	A $2 \times \Delta C 3-C 2$	11	3LSーミ5	11	345	＋5VOC			
552	A \times XA03－Ct	6	A2 A ACE－67	t	30501	ICFCLKT			8
$1 \mathrm{CS5}$	42xa03－C7	6	A1xA：1－2E	t	3 CSCL W	txcata			F
$¢ 51$	42xa03－C7	6	A $2 \times A C E-25$	t	30SCL	ICFDATT			B
1 C 53	A 2×4 C3－16	6	A $2 \times \Delta C$ 2－31	ϵ	$305 C L$	icfek－			F
97	A2×A03－17		BLS－¢ 7	11	Blis	GNI）			3
95	42xa03－18		BLS－S S	11	bus	GND			8
53	A2xa03－19	11	3LS－¢？	11	als	CNC			B
1018	A2xa03－2C	11	Eしs－101E	11	els	GNO			B
1054＊	A2xac3－21	6	A 2×1 C 2－23	ϵ	3 CSCl	ICFOR＋			F
S61＊	A2xav3－え2	6	AえJCぐ3	ϵ	3 CSCL	ICFCU7 $5+$	1W2－ 961		E
961＊	$A 2 \times \Delta 03-24$	6	A 2JC2－3t	6	30501 日K	ICFCUT5－	T－12－961		8
¢59＊	A2xa03－is	t	A2JCi－2c	6	$305 C l$	OLOS T	TW2－739		B
460＊	A2xa03－3C	6	A $2 \mathrm{JCz-24}$	t	30SCL BK	ICFCUSO－	TW2－963		8
¢59＊	A2xa03－E．	6	12JCz－3C	6	zOSCL EK	OLOSG	Tw2－559		8
		SILE COCE IDENT NO．				（SYNTHE SIT SYIC）			REV
HIGNF	ST WIRF NU	GER 1	S 10ic a		Ecct 3		SN－${ }^{\text {－}}$	759628	F

[^2]I SYATH E SIT SYNC J
mICMFST WIRE NUMBER IS IC7C \triangle EOCE3
$S M-A-7596<8$
REV

Change 1 B-31

Sile code loent nc.
REV

(SYNTH E SIT SYNC)
SIZE CCCE IDENT NO.

(SYNTH \& 3IT jYNC)
SIZE COCE ICENT NO.

$\begin{aligned} & \text { WIRF FRCP } \\ & \text { NO. END } \end{aligned}$	TERM	ENC 10	TERN	$\begin{aligned} & \text { COLOR } \\ & \text { ITEM } \end{aligned}$	REF NODE	$\begin{aligned} & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{r} \\ & \mathbf{E} \end{aligned}$	HETAARKS	$\begin{aligned} & R \\ & E \\ & V \end{aligned}$
CF1*A2XAC7-59	6	A 2×1 C 4-12	t	3CSCL W	7SEQ4			
227* $\triangle 2 \times \triangle C 7-5 ¢$	6	A $2 \times A C T-11$	t	3OSCL W	TSEC+			8
¢ 79* $42 \times \triangle C 7-E 1$	6	A $2 \times A C 7=3$	6	3CSCL AK	GNO			8
139* $42 \times \triangle \cap 7-62$	6	A1JCl-12	c	30501 W	TSTTXB			
287 * $2 \times$ XAC7- ${ }^{\text {c }}$	6	A1J01-13	E	3 CSCL W	TSTRX8S			
1-66*12XA07-63	6	\triangle 2xAC2-13	6	$3 C \leqq C L \quad h$	TEST3 TSTALT			F
141*A2XA07-E5	6	A1J01-15	6	$3 C S C L$	TSTALT			
150* $42 \times 407-66$	6	A $2 \times \mathrm{AC}$ - 14	6	33 SCL b	SGN-11			
¢83* $12 \times 4 C 7-67$	6	A2×ACE-55	6	3CSCL	AA			B
¢84 A $2 \times 407-$ ¢ $¢$	6	A2xAC 7-69	E	30SCL	AAA			
¢84*A2×A07-69	6	A $2 \times \Delta(7-68$	6	$305 C L$	MAA			
274*A2XA07-71	6	$A \overline{2 x a c} 7-55$	t	$305 C L$	ClKOUTC			
300 A $2 \times A C 8-C 1$	7	A2XAC8-21	t	$30 S C L$ BK	GND			
104 A $2 \times A C 8-C 1$	11	BLS-1C4	11	BLS	GND			
35 - $2 \times A C 3-C 2$	11	HLs-35	11	eus	+5VDC			
269 A2XA08-03	6	$A 2 \times A C C-44$ $A 2 \times A C$	6	$30 S C L$ $30 S C L$	$\begin{aligned} & \text { ER } 0256 C \\ & \text { CTN-11 } \end{aligned}$			
$265 \wedge 2 \times 4 C 8-C 6$	6	A $2 \times A C 8-68$	6	$30 S C L$	CTN-II			
$260 \wedge 2 \times \triangle C 8-12$	6	$A 2 \times A C \varepsilon-13$	t	3 CSCL W	PULLUP *			
2A0*A2×A08-13	6	$A \bar{x} \times \Delta C \varepsilon-12$	6	3 CSCL	PULLUP +			
257 A $2 \times 408-12$	6	$\triangle 2 \times 4 C \varepsilon-19$	6	$30 S C L$	PULLUP*			
271 A $2 \times A C 8-14$	6	$A 2) A(P-36$	6	$2 O S C L$	SMFSTRC			
257* 2XAC8-19 $^{\text {- }}$	6	A $2 \times A C E-13$	6	$30 S C L$	PULLUP +			
2 62 ¢ $2 \times A C 8-15$	6	A $2 \times \triangle C E-20$	t	$30 \leq C L ~ W$	FULLUP*			
262 $=\triangle 2 \times A C 8-20$	6	A2XAC8-19	6	$305 C L$	PULLUP*			
261 A $2 \times A C 8-2 C$	6	A 2×1 CE-29	E	3CSCL	FLLLUP +			
300* $42 \times 4 C 8-\overline{1} 1$	6	12)AC8-01	7	30SCL EK	GND			
272 12XAOB- 21	6	A $2 \times 4 C E-22$	6	30SOL EK	GND			
272* $42 \times A C B-$ 22	6	AटXACE-21	C	$20 S C L$ BK	GND			
$273-2 \times A C B-\overline{2}$	6	A $2 \times A C E-28$	6	$305 C L$ EK	GNC			
266 A $2 \times A C 8-23$	6	A 2 yACE-24	ϵ	3 CSCL	CCHPCVC			
266* A 2 \times AC8-24	6	$\triangle 2 \times A C E-23$	6	- 3CSCL W	CCMPOVC			
253 A2XA08-24	6	A $2 \times 14 C-C 7$	6	30 SCL	CCMPOVC			
	6	A2XAC7-17	E	$3 C S C L$	CCMPCK			
251 A $2 \times 408-25$	6	$A 2) A C C-10$	6		CCPPCKT ERKGND	TW2-274		
274* $\triangle 2 \times 4$ C 8 - 28	6	41」U1-22		- 3CSCL EK		1*2-274		
	6	A $2 \times \Delta C \mathrm{~F}-22$,	¢ 3 CSCL eK	GNO			
261*A2XA08-29	6	A2)ACE-20		$630 S C L$	PULLUP +			
263 A2XAC8-29	6	A $2 \times \pm C 8-43$		6 3CSCL b	PULLUP +			
291* ${ }^{\text {a }}$ 2 \times A $08-30$	6	AlJC1-19		- 3CSCL W	ERRCNT			
215**2×108-玉		A2)AC7-25		630 SCL h	COMPOTC			

(SYNTHE $3 I T$ SYNC SIZE CODE IDENT NO.

WIRF END FRTP	TERM	ENC IO		COLOR		REF			$\begin{aligned} & R \\ & E \\ & V \end{aligned}$
			TERM	Iter		node	T	REMARKS	
							E		
$250 \mathrm{~A} \times \mathrm{ACB-32}$	6	A $2 \times A C s-4 t$	6	3 CSCL	H	CCMPOTC			
274＊ 2 $2 \times 408-33^{\text {a }}$	6	AIJCi－31	E	30 SCl	W	ERRCUT	TW2－274		
271＊A2XAC8－36	6	AEXACE－14	t	30SCL	！	SMPSTRC			
104 A $2 \times A C 8-37$	11	cts－1C4	11	BuS		GND			
35 A2XAC8－38	11	Bus－35	11	eus		＋5VOC			
263＊＊2XAC8－43	6	AこXACE－2S	6	30SCL	h	PULLUP＋			
258 A2XACE－43	6	A $2 \times A C 8-47$	6	30 SCL	h	FULLUP＊			
258＊－ $2 \times 108-47$	6	A $2 \times \triangle C \varepsilon-43$	6	30 SCL	W	PULLUPt			
254＊－ $2 \times 14 \mathrm{CB-5C}$	6	AlJC1－30	ϵ	3CSCL	W	CMPATOC			
303 － 2×4 C8－5 1	6	A2）ACs－45	t	30 SCL	W	CMPERRT			
407＊A2×A08－玉2	6	A1JC1－2S	6	30 SCL	\cdots	mansmp C			
265＊A2×AC8－68	6	A2xACE－06	E	30 SCL	b	CTN－11			
104 A2×AC9－C 1	11	PLS－1 ${ }^{\text {c }}$	11	BLS		GND			
35 A2XAC9－C2	11	ELS－？	11	BuS		＋5VDC			
253＊A2XAC9－C 7	6	A2）ACE－24	6	30 SCL	－	CCMPCVC			
1CCA＊ $22 \times 409-C 8$	6	AlJCl－2t	t	205 CL	W	ERRSIG	TW2－100		B
	6	11J01－27	t	30502	BK	ERRGND	TW2－1008		日
251＊A2×A09－10	6	A2×ACE－25	6	30 SCL	W	CCMPCKT			
$3 \mathrm{C6} 12 \times \mathrm{AC9-10}$	6	$A<X A C C-12$	6	3 CSCL	W	CD：APCK 1			
294＊A2XAC9－11	6	A1JC1－22	t	3CSCL	ω	TESTPSV			
206＊A $2 \times$ AC9－12	6	$\triangle 2 \times \Delta C \leq-10$	t	30SCL	W	CCMPCK ${ }^{\text {T }}$			
319 A \times AC9－12	6	A $2 \times A C ¢-36$	7	30 SCL	0	＋15VOC			B
1051 A2XAC9－13	6	A2xA3－36	t	30 SCL	C	＋15VDC			
$187 * A 2 \times A 09-14$	6	A1JC2－35	6	30 SCL	W	CAT $2 E R$			
C81 A \times 人AO9－15	6	AXXACs－4？	t	$305 C L$	\checkmark	－15VDC			8
CA2 $42 \times A C 5-15$	6	－ $2 \times 812-34$	7	30 SCL	v	－15VDC			8
297＊A2×A09－16	6	A1JCl－25	6	30 SCL	W	TESTMI 5			
319＊A2×AC9－36	7	A 2×1 C¢－13	t	3 CSCL	C	＋15VOC			B
$1 \mathrm{CA} A 2 \times 409-37$	11	BLS－1 Cl_{4}	11	eus		CND			
≥ 13 A 2×1 C9－38	7	$\triangle 2 \times A C 5-47$	t	3 CSCl	R	＋5VOC			
35 A2XAC9－38	11	RLS－？${ }^{\text {c }}$	11	BLS		＋5 VDC			
981＊A2XAJ9－43	6	A $2 \times 14 \leq-15$	6	30 SCL	v	－1 SVOC			8
269＊A2×AC5－44	6	A2）ACe－03	t	3 CSCL	N	ERD256C			
303＊A2XACS－45	6	A 2×0（ $8-51$	ϵ	30SCL	W	CMPERRT			
250＊＊2×409－46	6	A 2×8 C $8-32$	C	3 CSCL	W	CCMPDTC			
313＊ 2 $^{\text {X }}$ AC9－47	6	A $2 \times A \subset ¢-26$	i	3 CSCL	R	＋5VCC			
718＊ $42 \times 409-4 F$	6	A2）AC5－04	7	$30 S C L$	G	－5vDC			
255＊A2×AC9－45	6	A1JC1－23	6	3 CSCL	W	testimsv			
1月8＊A2×A09－5C	6	－1JCこ－37	t	3 CSCL	W	catcne			
312＊A2×A09－5	t	A1JCz－31	6	$30 \leq C L$	h	CLKZER			

[^3]（ SYATH E EIT SYVC ）
highest mire numbef is lctc a dootz
54－8－759628
REV

Change 1 B-37

$\begin{gathered} \text { WIRE } \\ \text { NO. } \end{gathered}$	ENC FFCN	team enc 10		TERM	$\begin{gathered} \text { CCLOR } \\ \text { ITE } \end{gathered}$	KEFNCDE	$\begin{aligned} & N \\ & \mathbf{O} \\ & \mathbf{r} \\ & \mathbf{E} \end{aligned}$	REAARKS	
104	42x411-37	11	8LS-1C4		Eus	GND			8
35	A2XA11-38	11	BLS-	11	bus	45 VDC			8
104	42xal2-C1	11	BuS-164	11	BLS	GNB			B
35	A2×A12-C2	11	RUS-3 5	11	ets	-SVOC			E
889	42xal2-C7	6	A2 xal2-c8	t	3 CSOL W	RDAC-3			
892	42×A12-cE	6	A 2×1 13-C6	c	3 cscl m	RCAC-1			
89	12xal2-11	6	A2XA13-05	6	30 SCL	RCAC-4			
891	42xal2-14	6	A $2 \times 112-10$	ϵ	2 CSOL W	RCAC-5			
1017	42xal2-15	6	AExA1z-1t	t	3 CSCL n	RSIGNT			日
1017	A2XA12-1t	6	A $2 \times A 1:-15$	t	3CSOL	RSIGNT			B
1016	A $2 \times 412-16$	6	A $2 \times 12-17$	t	2OSCL	RSIGNT			B
591	A2xal2-17	6	A) XA11-23	6	30SCL	RSIGNT			8
1016*	A2xa12-17	6	A 2×A1iz-16	t	$305 C L$	RSIGNT			B
592*	- $2 \times$ PA12-18	6	A2>A11-24	6	$305 C L$	RTRANT			8
E88	A2xa12-zC	6	A $2 \times 412-C 7$	t	3 CSCL W	FCAC-2			
¢95*	47x412-24	6	A $2 \times 411-$ et	t	3 CSCL	RBS SR T			E
887	- 2×1 12-3 ${ }^{\text {c }}$	6	A $2 \times 413-11$	6	30 SCL	RDAC-6			
994	- $2 \times 12-31$	6	A $2 \times A 11-35$	t	3 CSCL h	FBSBRC			E
882	A2xA12-	6	A2xal2-15	6	30SCL h	RBSBRC			
886	-2xa12-33	6	A $2 \times \pm 1 \leq 13$	6	3 CSCL	RCAC-7			
¢ 42	A2xa12-34	7	A $2 \times \mathrm{ACS}-15$	e	$3 \mathrm{CSCL} v$	-15VCC			8
864	42xal2-34	11	BUS-Et4	11	els	-15VDC			
104	42xal2-37	11	8しS-1C4	11	BLS	GNO			8
35	- 2×1 12-38	11	eus-35	11	BLS	+5VDC			8
¢ AP	- $2 \times \times 12-66$	6	A 2×111-14	6	3CSCL ${ }^{\text {b }}$	RLFUNOT			8
881	A2 $2 \times 12-68$	6	A $2 \times A 12-12$	6	3 CSCL	RCAC-8			
¢93*	A2×A12-E9	t	A2xal1-25	t	$305 C L$	RLFOURC			B
864	A2XA12-70	11	BUS-E¢4	11	Bls	-15VDC			
35	- $2 \times 413-\mathrm{C} 2$	11	ELS-25	11	Bus	+5VOC			B
892 *	A2XA13-CE	6	A $2 \times \pm 12$-CE	6	3CSCL	RCAC-1			
E88*	42xa13-07	t	A2xal2-2C	6	30 SCL 6	R $C A C-2$			
$889 *$	- 2×1 13-CE	6	A $2 \times A 12-C 7$	t	33 SCL W	RDAC-3			
A90.	12xa13-C9	ϵ	A $2 \times 412-11$	c	3 CSCL h	RLAC-4			
A91*	A2xA13-10	6	A 2×418-14	c	3 CSCL	RCAC-5			
887	- 2×4 13-11	6	A2)A1z-20	c	30 SOL W	RCAC-6			
8 Al *	A $2 \times 413-12$	ϵ	A $2 \times 41 \mathrm{z}-68$	6	3 Csct	RC AC-8			
886	A $2 \times 413-12$	6		t	3 CSCL W	ROAC-7			
846	A2xa13-15	6	A2)ACi-56	t	30 SOL H	R8SARC			
A 82 *	A2 XA 13-15	6	A $2 \times 412-31$	t	3 CSCL	RESBRC			
P53	-2xa13-17	11	GAC fis-e53	11	BLS	GNO			

(SYNTH E JIT SYNC)
SILE COCE ICENT NO.
REV

Change 1 B－39

$\begin{aligned} & \text { IRF FRCN } \\ & \text { NC. END } \end{aligned}$	TEFM	ENC	10 TERM		$\begin{aligned} & \text { COLOR } \\ & \text { ITEM } \end{aligned}$		REF NÓDE	$\begin{aligned} & \mathbf{N} \\ & \mathbf{O} \\ & \mathbf{T} \end{aligned}$	REMARKS	$\begin{aligned} & R \\ & E \\ & V \end{aligned}$		
					E							
961*A2XA14-58	15	ACAPIER	861	15			188	SHLC	GNO	coax		
$860 * 42 \times A 14-65$	15	A[APTER	860	15	188	SHLD	CNO	cosx				
860* 12×14 - 6 C	15	ACAPTER	8 ¢0	15	188	CTR	RVCO	$\cos x$				
860* $\triangle 2 \times A 14-67$	15	ACAFTEA	860	15	188	SHLD	CNO	cosx				
6t4 $42 \times 14-7 \mathrm{C}$	11	BLS-EC4		11	els		-15VDC					
848 A2XA14-72	11	RLS-E48		11	BeS		-15VDC					
903* $12 \times 115-\mathrm{C} 2$	14	ACAPTER	903	14	188	SHLD	GND	cosx				
903*42xa15-c3	14	ACAPTER	C. 3	14	188	CTR	FMIXO	$\cos x$				
903*A \times XA15-C4	14	ACAFTER	903	14	188	SHLD	CND	$\cos x$				
947* 4 PXA15-C5	14	ACAFIER	947	14	$1 \varepsilon 8$	SHLD	GNO	$\cos x$				
c47*A2×A15-06	14	ACAFTER	547	14	188	CTR	R1EM1X	ccax				
	14	ACAPTER	947	14	188	SHLD	GND	$\cos x$				
	14	ACAFTER	SC4	14	188	SHLC	GND	CCAX				
904*A2XA15-C9	14	ACAPTER	S04	14	188	CTR	R45M1X	$\cos x$				
	14	$\triangle C A F T E R$	$9 C 4$	14	188	SHLD	CND	CCAX				
$853 \quad 12 \times 15-17$	11	GNC EUS	853	11	els		GNC					
E54 A $2 \times 15-18$	11	GND FLS	854	11	8US		GND					
855 A $2 \times 15-19$	11	GAC ELS	855	11	BLS		GND					
f56 A $2 \times 115-20$	11	GAC ELS	856	11	BL S		GND					
864 A $2 \times 15-54$	11	PLS-EE4		1	els		-15VDC					
	11	BしS-E48		11	els		+15VJC					
$903 * A 2 \times A 15-38$	14	ACAPTER	903	14	188	SHLD	GND	$\cos x$				
$503 * A 2 \times A 15-25$	14	ALAFTEF	903	14	188	CTR	RM 1×0	CCAX				
$S 03=A 2 \times A 15-4 C$	14	ACAFTER	903	14	188	SHLO	GND	$\cos x$				
947**2×A15-41	14	ACAFTEK	947	14	188	SHLD	GND	CoAx				
947* 4 2xal5-42	14	$A[A F 1 E R$	547	14	188	CTR	R15MIX	cosix				
	14	ACAPTER	947	14	188	SHLD	GNO	CCAX				
Cc4*- 2XA15-44 $^{\text {c }}$	14	ACAFIEK	904	14	188	SHLD	GND	COAX				
904* $12 \times \pm 15-45$	14	ACAPTER	904	14	188	CTR	R45MIX	$\cos x$				
904*A2XA15-4t	14	$\triangle[\triangle F T F R$	904	14	188	SHLD	GAO	COAX				
853 A $2 \times 415-53$	11	GNC FIS	$8 \leq 3$	11	SLS		GND					
E54 A $2 \times \pm 15-54$	11	GNC ELS	E 54	11	BLS		GNO					
855 A $2 \times 415-55$	11	GNE f ${ }_{\text {G }}$		11	BLS		GND					
P56 A X A 15-5t	11	CNC PlS		11	els		GNJ					
E64 A 2XA15-7C	11	PLS-EE4		11	BLS		-15VCC					
84A A $2 \times 15-72$	11	RLS-E48		11	BUS		+15 VOC					
909**2×A16-12	14	ACAFTER	909	14	188	SHLD	CNO	Conx				
909*A2XA16-13	14	ACAFTER	Sc9	14	188	C1R	F 45 MA	COAX				
	14	$\triangle C \triangle F I E R$	909	14	1E9	StLC	GN)	$\cos x$				
f53 $12 \times 416-17$	11	CAC ELS-	¢ 53	11	ELS		GND					
	SIZE CCCE				JoENT NO		(SYNTH E OIT SYNC J			REV		
HIGHEST WIRF NIJ	PER	151076	A		Ecce				159528	F		

$\begin{gathered} \text { WIRE } \\ \text { NO. } \end{gathered}$	ENC ${ }^{\text {FFT }}$	IERM	ERE ${ }^{\text {TO }}$ T	TERM	$\begin{aligned} & \text { COLOR } \\ & \text { ITEN } \end{aligned}$		KEFNODE	$\begin{aligned} & N \\ & \mathbf{N} \\ & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	REMARKS	$R$$E$$V$
E 54	A $2 \times 416-18$		GNL ELS-854	11	BLS		GNO			
A55	A $2 \times 416-15$	11	GNC ELS-855	11	8us		GNO			
856	A2xa16-2C	11	GND ELS-856	11	BLS		GNO			
$904 *$	- $42 \times 416-21$	14	ACAFTER 904	14	188	SHLC	GNO	$\cos x$		
904*	- 4 2xa16-22	14	ACAPIER 904	14	1 ¢8	CIR	R45M1X	$\cos x$		
SC4*	A2 \times A16-23	14	ACAPTER 904	14	188	SHLD	END	coax		
902*	* 2×1 16-25	14	ACAPIER 902	14	128	SHLC	GNO	$\cos x$		
902*		14	ALAFTER 902	14	188	CIR	R45MVCO	$\cos x$		
Sc2*	- 2 XA16-? 1	14	ACAPTER 902	14	188	SHLC	END	$\cos x$		
864	A2×416-: 4	11	ALS-ft4	11	BLS		-15VOC			
E48	A $2 \times 416-36$	11	8LS-E48	11	els		+15VDC			
909*	A $2 \times 416-48$	14	ALAPTER 909	14	188	SHLD	GND	$\cos x$		
SC9*	A $2 \times 416-4 c$	14	ALAFIER 909	14	198	CTR	R 45 ma	$\cos x$		
Sc9*	- $2 \times 416-5 C$	14	ACAFTER 90s	14	183	SHLC	END	$\cos x$		
853	A $2 \times 416-53$	11	GND EtS-FE3	11	BLS		GNO			
E 54	A $2 \times 416-54$	11	GAC Pls-854	11	eus		GNO			
855	A2xa16-55		CNO ELS-P55	11	8LS		GNO			
856	A2xal6-5t	11	GNC E15-856	11	eus		GND			
SC4*	- $42 \times 416-57$	14	ACAFIER 904	14	189	SHLC	CND	$\cos x$		
904*	- $2 \times 416-58$	14	ALAPTER 904	14	188	CTR	R45M1X	coax		
904*	- 4 P $\times 16$ - 5	14	ACAFTER 904	14	188	StLC	END	cosx		
S02*	- $42 \times 416-65$	14	ACAFTER 502	14	188	StLD	GND	$\cos x$		
902*	- $2 \times 416-t t$	14	ACAFIER 902	14	188	CTR	K45MVCO	$\cos x$		
902 *	* $2 \times 816-67$	14	ACAFJER 902	14	188	SHLD	GND	$\cos x$		
$8 \in 4$	A $2 \times 416-7 C$	11	ELS-Et4	11	BLS		-15VDC			
54 P	A $2 \times 416-12$	11	BLS-848	11	EuS		+15VOC			
853	A2xal7-17	11	GND ELS-853	11	8LS		GNC			
854	A2xA17-18	11	GNE ELS-E54	11	BLS		GNU			
555	:2xal7-19	11	GNC FLS-855	11	BLS		GND			
856	A2xa17-20		GNC ELS-E56	11	BLS		GNO			
$8{ }_{8} 4$	A2×A17-34	11	ELS-Eと4	11	els		-15VCC			
848	A2XA17-3t	11	BUS-E4\%	11	els		+1 bVDC			
853	A2xal7-63	11	GNC ELS-E53	11	els		GNC			
854	A2xa17- S_{4}	11	GND PLS-854	11	- ${ }^{\text {c }}$		GN)			
855	A2xal7-55		GNC Ets-855	11	BLS		GNi)			
E 56	42×417-5t	11	CNC fls-856	11	8LS		GNU			
864	$\Delta 2 \times \Delta 17-7 C$	11	ELS-EE4	11	8us		-15VDC			
E48	4) $\times 1$ 17-72	11	Bus-848	11	815		+15VDC			
P 50	A2XA18-02	11	Pls-fio	11	gus		+5VDC			
705	12×418-C4	11	Bus-ics	11	bus		-5VCC			

SYNTH \& BIT SYNC 1
SIle ccoe ident no.
highest mire numper is loti a ecoeb
$S M-A-759 j 28$

SHEET

41

$\begin{aligned} & \text { WIRE } \\ & \text { AC. } \end{aligned}$	ENC ${ }^{\text {FRCN }}$	IEFM	T0		CCLOR		REFNODE	N		
			Enc T	ER ${ }^{\text {m }}$		ien		T	REMARKS	\checkmark
								E		
\& 63	A 2×18-17		GNC ELS-253	11	als		GNO			
854	A2xA18-18	11	GAD Et5-854	11	EuS		GNO			
F 55	A2xA18-19	11	GNC PLS-855	11	BUS		GNO			
1014*	A $2 \times \Delta 18-\dot{C}$	6	AIJC1-38	6	30SC	CL BK	RS YNGNO	TW2-859		B
856	A2xA18-8C	11	CNC HLS-256	11	BLS		GND			
900	A 2×418 - ${ }^{\text {c }}$	6	A $2 \times 118-23$	t	$305 C$	L	RS AMP			
1020	A $2 \times 418-2$?	6	A $2 \times \Delta<0-23$	ϵ	3 CSC	W	RDUMP			8
900*	A axala-23 $^{\text {a }}$	6	$A<x \Delta 1 \varepsilon-21$	ϵ	30 SCL	W	RSAMP			
901		6	A2xAㄹ 2-35	6	3 CSC	L \quad W	RSAMP			
1014*	A2xala-is	ϵ	A1JC1-37	ϵ	3 CSC	L	ASYNTST	TW2-1314		E
SC2*	A2xa18-E9	14	ALAFTER SC2	14	188	SHLI	CND	COAX		
S02*	A2xa18-3C	14	ACAPTER 902	14	1E8	CTR	R45MVCO	$\cos x$		
S02*	- $2 \times 818-\equiv 1$	14	ACAFTER S02	14	188	SHLC	CND	ccax		
$8 \in 4$	A2XA18-34	11	Els-tt4	11	BuS		-15VDC			
848	a 2×18 - ${ }^{\text {ct }}$	11	BLS-848	11	els		+15VCC			
850	12×A18-28	11	nus-850	11	8us		+5VCC			
705	42xald-4C	11	8LS-7C5	11	BUS		-5VDC			
853	A2xal8-5 3	11	GNC ELS-853	11	els		GNO			
E 54	A) XA18-54	11	GAC els-e 54	11	8LS		GNO			
855	A2XA18-55	11	GAC PIS-E55	11	els		GNO			
E 56	A2xals-st	11	GMC fls-856	11	els		GNO			
502*	A2xal9-65	14	ACAPTER 502	14	188	SHLD	GNO	cosax		8
502*	$\Delta 2 \times \Delta 19-6 t$	14	ACAFIER 9C2	14	188	CTR	F45MVCO	$\cos x$		8
SC2*	a $2 \times 18-67$	14	ACAFTER 902	14	188	SHLO	GND	$\cos x$		
fe4		11	RLS-ft4	11	BLS		-15VDC			
848	A $3 \times 413-12$	12	ELS-£4d		EUS		-15VOC			
F50	a $2 \times 419-\mathrm{C} 2$	11	RUS-850	11	BLS		+5VCC			8
705	42xa19-(4	11	PLS-7C5	11	eus		-5VCC			8
E 53	A2 Xa19-17	11	GAD ELS-853	11	BLS		GND			A
\& 54	A2XA19-12	1011	GND ELS-854	11	BLS		GND			B
F55	A2xa19-15	11	GAC Eis -855	11	8us		GNJ			8
856	A2×a19-20	11	GAC FLS-856	11	8ls		GNO			8
864	A2xal9-24	11	PLS-Et4	11	BUS		-15VOC			B
E48	42xa19-5t	11	RLS-848		els		$+15 \mathrm{VOC}$			B
$F 50$	-2xal9-38	11	BUS-¢50		BLS		+5VOC			H
7 CS	A2xa19-4C	11	PLS-7C5		9LS		-5VCC			8
853	A2xal9-5 3	11	GND BLS-953	11	BuS		GNJ			8
$f 54$	A2xals-E4	11	GAC PLS-E54	11	BLS		GNi)			8
P 55	12XA19-5	11	GND ELS-855	11	BuS		GNO			8
$F 56$	A \times X $19-50$	11	GAC PLS-8.56	11	els		GND			8

Change 1 B-42

$\begin{aligned} & \text { WIRE } \\ & \text { NC. } \end{aligned}$	END ${ }^{\text {FRC＊}}$	TERM	Enc ${ }^{\text {TC }}$	TER M	$\begin{aligned} & \text { COLOR } \\ & \text { ITEN } \end{aligned}$	REF NCOE			R
							1	REMARKS	v
							E		
E64	A2×A19－70	11	Bus－Ef4	11	BLS	－15VCC			B
848	A $2 \times 419-72$	11	BLS－E48	11	eus	＋15VCC			B
¢ 50	－ 2×1－ $20-\mathrm{c} 2$	11	BuS－850	11	BLS	＋5VDC			
705	A $2 \times 120-14$	11	BLS $-7 C 5$	11	eus	－5VDC			
1027＊	－ $2 \times 850-66$	6	A2xal1－34	6	3CSCL W	RXSYNRT	142－1027		8
1019	42 $\times 1.20-\mathrm{C} 7$	6		t	30 SCL \quad b	ATCXOGND			8
1026＊	A $2 \times 120-c \varepsilon$	6	A2xa11－15	ϵ	3 CSCL	RXSYNRC	TH2－1026		B
SC5	A2xa20－11	6	A $2 \times 8 \leq 4-46$	6	30 Scl b	RXMX 1			
989	A $2 \times 420-12$	6	A $2 \times-24-24$	t	3CSCL W	RXPX4			θ
¢Cb	12x－420－14	6	A2 XAC4－EC	6	3 CSCL W	RXMX 2			
SC7	A2XA20－15	6	A 2×4 く	t	$305 C L$	RXMX8			
853	A2xa 20－17	11	GNC EIS－953	11	eus	GND			
854	12xa20－18	11	GAC ELS－854	11	BLS	GNO			
ع 55	42xa20－19	11	GNC EES－855	11	BUS	GNO			
856	12xa 20－＝0	11	GNC ELS－856	11	BLS	GNO			
1c20＊	12xa20－こ？	6	A2） A18－22 $^{\text {a }}$	t	30501	ROUMP			8
510	42xa 20－27	6	A $2 \times 4 \leq 3-39$	，	3 OSCL	R10100KT			
896	A2 $\times 120-28$	6	A $2 \times A=1-14$	t	3 csc －	RMIXD	162－896		
e96	42XA20－29	6	A $2 \times A=1-15$	c	3 CSCL EX	RMIXOGNO	TW2－896		
911	12x－20－20	6	A2xais－41	t	3 CSCL	RIOOKIMT			
899	$12 \times 420-\equiv 1$	6	A 2 x $22-42$	t	$305 C L$	AI－IOMT			
864	A2XA20－34	11	BLSCE4	11	8LS	－15VOC			
248	A $2 \times 120-36$	11	BLS－E48	11	Bus	＋15VDC			
1026＊	42 $\times 120-37$	7	A2XA11－37	7	$305 C L$ ek	GNO	TH2－1026		e
1027＊	A2xa 20－37	7	A2X＊11－37	7	3CSCL BK	GNO	1W2－1027		8
250	A $2 \times 420-3 \mathrm{E}$	11	PLS－850	11	eus	－5VDC			
7 CS	42xa20－40	11	BLS－765	11	BLS	－5VOC			
853	A2xa 20－53	11	GNC ELS－253	11	8us	GND			
854	12xa20－54	11	GND ELS－854	11	BLS	GNO			
E 55	－ $2 \times 470-55$	11	GND PLS－855	11	BLS	GND			
856	－2xa20－56	11	GNC EtS－E S6	11	BLS	GND			
R64	A2XA20－70	11	RLS－\｛E4	11	BLS	－15VCC			
848	A2xa20－72	11	PUS－ $6<8$	11	8LS	＋15VOC			
850	12xa21－C2	11	PUS－8EC	11	els	＋5VDC			
705	A2XA21－C4	11	PLS－iく5	11	8 LS	－5VDC			
SC3＊	A2XA21－ct	14	ACAPTER 903	14	188 SHLO	GNO	coax		
C63＊	A2xa21－C7	14	ACAFTER SO3	14	188 CTR	RM 1×0	COAX		
¢ 53	A2xa21－cE	14	ACAPTER 903	14	188 SHLC	GND	COAX		
89＊＊	A2×A21－14	6	A $2 \times 12 \mathrm{C}-2 \mathrm{E}$	6	30 SCL h	RW1 ${ }^{\text {P }}$	TW2－896		
P96＊	A2×A21－15	6	AこXA： $0-24$	6	3 CSCL EK	RM $1 \times C G N D$	TW2－856		

I SYNTH E BIT SYNC J
SIZE CCLE IJENT NO．
REV
HICHFST WIRE NURPER IS ICTC A ECOE3
5：4－A－757：28
F

(SYATH E BIT SYVL)
SIZE CCLE IUENT NO.

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-45

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-47

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-44

Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-49

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-50

Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-52

Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 3-53

TM 11－5820－804－34／NAVELEX 0969－LP－169－4021／TO 31R5－2G－272
Table B－1．Synthesizer and Bit Synchronizer，Wire List－Continued

WIPE ENU FFCPNO．ENU	TERM	ENC TC	TER	$\begin{aligned} & \text { COLOR } \\ & \text { ITE } \end{aligned}$		REF NODE	$\begin{aligned} & N \\ & \mathbf{O} \\ & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	REMARKS		$R$$E$$V$
250\％8US－850	11	A $2 \times-2<-02$	11	8し5		－5 VDC				E
850＊RUS－85C	11	A $2 \times \pm<2-38$	11	ELS		＋5VDC				B
F50＊8LS－850	11	AこXAこ̇ーC2	11	BLS		＋5VDC				
ع50＊BUS－85C	11	42xa2？－38	11	eus		＋5VDC				
E50\％BUS－R5C	11		11	BLS		＋5VDC				8
F50＊R15－850	11	A $2 \times 1 \times 6-38$	11	QLS		＋5VCC				e
159 BUS－E5C	1	J01－J	2	$E \rightarrow 2 C$	R	＋5VDC	PMR	PGT		8
86＊8US－86	11	A1xa＜1－18	11	ets		CNO				8
86＊FLS－E6	11	A1x－21－54	11	BLS		GAD				8
P6＊EUS－E6	11	41×422－18	11	8LS		GNU				e
86＊PUS－86	11	A1xa＜2－54	11	els		ENO				8
R6＊PUS－86	11	A1×Aく玉－18	11	ELS		GND				B
86＊${ }^{\text {c }}$ S－86	11	A1×Aこ2－54	11	els		GNO				H
1039 RUS－86	1	hl－	12	E－20	BK	GNO	GND	PGT－36	$2 / T E R M$	8
864＊BL S－864	11	A2xA12－34	11	BLS		－15VUC				
664＊BLS－864	11	A2xa12－7C	11	ELS		$-15 \mathrm{VDC}$				
f64＊BUS－864	11	A $2 \times 41 \geq 34$	11	BUS		－15VOC				
EE4＊RIIS－EE4	11	A2 $2 \times 12-70$	11	BしS		$-15 V D C$				
164＊UUS－864	11	$A E X A 1-34$	11	865		－15VDC				θ
8＋4＊RUS－864	11	A2 $\times 14$－ 70	11	RLS		－15VCC				
864＊RLS－864	1	A 2×1 15－34	11	els		－15VDC				8
E C \％A PUS－864	11	A $2 \times 015-7 \mathrm{C}$	11	BLS		－15VCC				
8t4＊AUS－864	11	A2XA1t－34	11	BuS		－15VCC				
§t4＊RLS－E64	11	A2xalt 70	11	els		－15VCC				
f64＊RUS－864	11	A2XA17－34	11	BLS		－15VOC				8
864＊RUS－264	11	A2 $\times 1.7-70$	11	BUS		$-15 V D C$				8
864＊PUS－864	11	A 2×1 ¢	11	BLS		－15VDC				
864＊RUS－864	11	A $2 \times 118-70$	11	eus		－15VDC				
f64＊BUS－864	11	A 2×41 c－34	11	BLS		－15YDC				8
FE4＊RUS－EE4	11	A $2 \times 11-70$	11	BUS		－15VDC				8
Ft4＊RUS－8t4	11	$\mathrm{A} 2 \times 1=\mathrm{C}-24$	11	BLS		$-15 V D C$				
864＊BUS－864	11	A2xa2C－70	11	EUS		－15VOC				
ft4＊RUS－864	11	A $2 \times \Delta=1-34$	11	els		－15VCC				
864＊RU5－864	11	A2×421－7C	11	215		－15VUC				
43 BUS－864	1	J01－V	2	E－2C	v	－15VCC	PHR	PGT		
E9＊RLS－89	11	A1x： $1-19$	11	ELS		GND				8
89＊BUS－89	11	A1×A21－55	11	ElS		GNO				B
89＊RLS－89	11	A1xa $2-19$	11	BLS		GNO				－
A9＊BLS－89	11	A1 X－こ－55	11	ELS		GND				B
A9＊815－89	11	A1xaz 2 －15	11	BLS		GND				e

（SYATHE 3IT SY：TC） REV
SITE CCEE IOENT NO．

Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-56

TM 11-5820-80A-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-57

TM 11-5820-804-34/NAVELEX 0969-LP-169-A021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

Change 1 B-58

TM 11 -5820-804-34/NAVELEX 0969-LP-169-4021/TO 31 R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List-Continued

Change 1 B-59

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-1. Synthesizer and Bit Synchronizer, Wire List - Continued

$\begin{aligned} & \text { WIRE } \\ & \text { NC. ENO } \end{aligned}$	FFCM	TERM	Enc TC	TER M	COLCRITEM		REF NODE	v			$\begin{aligned} & R \\ & E \\ & V \end{aligned}$	
							0					
							T		YARKS			
								E				
1006**1-		12	ElS-c7	1	E-2C	BK		GND	GV0	PGT-97 2/TERM		8
41*W1-		12	GNL ELS-853	1	E-20	BK		GND	GND	PGT 2	TERM	
41*W1-		12	GNC ELS-E54	1	E-2C	EK	GND	GND	PGT 2	TERM		
42**1-		12	GAC EIS-855	1	E-2C	EK	GNO	GNO	PGT 2	TERM		
42*W1-		12	GND ELS-856	1	$E-20$	EK	END	GNO	PGT 2	TERM		
c99*W1-		12	GNO ELS-EG2	1	E-2C	EK	CND	GND	PGT-8		P	
152象W		12	JO1-t	2	E-1t	BK	GNO	+5VDC	C RTN			
153*W1-		12	JOI-C	2	E-2C	EK	GNO	-5VOC	C RTV			
154*w1-		12	JO1-ト	3	E-20	BK	GNO	$+15 \mathrm{~V}$	CCRTN	2/TERM	8	
155*m1-		12	JCl->	2	E-20	EK	GN:	-15vor	DCR IN			

Change 1 B-60

Table B-2. Power Supply PS1 Wire List

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
$J 1$	1	Al	35	18	W	
J	2	Al	36	18	BK	
J	3	Al	30	22	G	
Al	1	CR17	A	18	Y	
Al	2	C21	(-)	18	W/O	
Al	3	CR18	A	18	Y	
Al	4	CR19	A	18	BL	
Al	5	C22	$(-)$	18	v	
Al	6	CR20	A	18	BL	
Al	7	Q4	C	20	R	Twisted poir.
Al	8	C5	(+)	20	W / R	
Al	9	Q5	C	20	BK	Twisted pair.
Al	10	CR15	C	18	BR	
Al	10	CRII	A	24	BR	
Al	11	C20	$(+)$	18	W/BR	
Al	11	C18	(-)	24	W/BR	
Al	12	CR16	C	18	BR	
Al	12	CR12	A	24	BR	

Change 1 B-61

Table B-2. Power Supply PS1 Wire List - Continued

From		To		Wire		Remarks	
Symbol number	Pin	Symbol number	Pin	Size	Color		
AI	13	Q6	C	20	W	Twisted pair.	T
A 1	14	C5	(+)	20	W/R		
AI	15	Q7	C	20	GY	Twisted pair.	∇
AI	16	-				Not used.	
Al	17	-				Not used.	
AI	18	-				Not used.	
Al	19	E4		22	GY	Twisted pair.	F
A1	20	A3	D	22	R		
AI	21	E3		22	W	Twisted pair.	
Al	22	CR13	C	16	BK	2 wires.	
Al	22	CR9	A	22	BK		
A)	23	C19	(+)	16	W/BK	2 wires.	
Al	23	C17	(-)	22	W/BK		
Al	24	CR14	C	16	BK	2 wires.	
AI	24	CR10	A	22	BK		
Al	25	E2		22	BK	Twisted pair.	T
Al	26	A3	A	22	R		
Al	27	El		22	GY	Twisted pair.	

Change 1 B-62

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
AI	28	-				Not used.
Al	29	-				Not used.
Al	30	J	3	22	G	
AI	31	-				Not used.
Al	32	-				Not used.
AI	33	-				Not used.
Al	34	CR3	C	18	W/BK	
AI	35	וل	1	18	W	
Al	36	נ	2	18	BK	
Al	37	CR2	C	18	W/BK	
CR2	A	C5	(-)	18	W/GY	
CR2	C	Al	37	18	W/BK	
CR3	C	A1	34	18	W/BK	
CR5	C	C5	(+)	18	W/R	
CR9	A	Al	22	22	BK	
CR10	A	A 1	24	22	BK	
CRII	A	AI	10	24	BR	
CR12	A	A1	12	24	BR	

Change 1 B-63

Table B-2. Power Supply PS1 Wire List - Continued

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
CR13	C	AI	22	16	BK	2 wires.
CRI4	C	Al	24	16	BK	2 wires.
CR15	C	Al	10	18	BR	
CR16	C	Al	12	18	BR	
CR17	A	Al	1	18	Y	
CR18	A	A 1	3	18	Y	
CR19	A	Al	4	18	BL	
CR20	A	Al	6	18	BL	
CR49	A	TPI		24	R	
CR49	A	C51	(+)	18	R	
CR49	G	P2	12	24	R	
CR49	C	C51	(-)	18	W/R	
CR50	A	C52	(+)	22	W/G	
CR50	G	P3	12	24	W/G	
CR50	C	TP2		24	G	
CR50	C	C52	(-)	22	G	
CR5 1	A	TP3		24	\bigcirc	
CR5 1	A	C53	(+)	22	0	

Change 1 R-64

Table B-2. Power Supply PSI Wire List - Continued

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
CR5 1	G	P2	1	24	0	
CR51	C	C53	(-)	22	W/O	
CR52	A	C54	(+	22	W/N	
CR52	G	P3	1	24	W/v	
CR52	C	C54	(-)	22	v	
CR52	C	TP4		24	v	
C5	(+)	R1	A	22	W / R	
C5	(+	CR5	C	18	W/R	
C5	(+	A1	8	20	W / R	
C5	(+)	A 1	14	20	W/R	
C5	(-)	Q6	E	20	W/G	
C5	(-)	CR2	A	18	W/G	
C5	(-)	Q5	E	20	W/G	
C5	(-)	A3	B	22	W/G	
C17	(+)	Q12	C	22	BK/BL	
C 17	(+)	P2	14	22	BK/BL	
C 17	(-)	Al	23	22	W/BK	
C18	(+)	Q13	C	24	$B K / Y$	
Change 1 B-65						

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31RS-2G-272
Table B-2. Power Supply PSI Wire List - Continued

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
C18	(+	P3	14	24	BK/Y	
C 18	(-)	AI	11	24	W/bR	
C19	(+)	AI	23	16	W/BK	2 wires.
C19	(+	Q15	c	16	W/BK	
C 19	(+)	Q17	C	16	W/BK	
C19	(-)	C51	(-)	16	W/R	2 wires.
C20	(+)	Al	11	18	W/BR	
C20	$(+)$	Q19	C	18	W/BR	
C20	(-)	C52	$(-)$	18	G	
C21	(+)	Q21	C	18	w / Y	
C21	$\left({ }^{(+)}\right.$	P2	7	24	W/Y	
C21	$(-)$	AI	2	18	w/o	
C21	(-)	C53	(-)	18	w/o	
C22	(${ }^{+}$	Q23	C	18	v	
C22	(+)	P3	7	24	v	
C22	(-)	A 1	5	18	v	
C22	(-)	C54	$(-)$	18	v	
C22	(-)	A 1	5	18	v	

Change 1 B-66

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31RS-2G-272
Table B-2. Power Supply PS1 Wire List - Continued

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
C51	(+)	E10		16	R	
C51	(+)	E13		16	R	
C51	(+)	CR49	A	18	R	
C51	(+)	P2	19	24	R	
C51	(+)	P2	20	24	R	Twisted pair.
C51	(+)	PSIP1	D	20	R	+5V.
C51	$(+)$	PSIPI	E	20	R	$+5 \vee$.
C51	(+)	PSIPI	H	20	R	+5V.
C51	(+)	PS IPI	H	20	R	$+5 \vee$ 。
C51	($\left.{ }^{(}\right)$	PSIPI	E	20	R	$+5 \vee$.
C51	(${ }^{\text {) }}$	PSIPI	J	20	R	$+5 \vee$.
C51	(+)	PS IPI	D	20	R	+5 V .
C51	(-)	C19	(-)	16	W/R	2 wires.
C51	(-)	CR49	c	18	W/R	
C51	$(-)$	P2	13	24	W/R	
C51	(-)	P2	15	24	W/R	Twisted pair.
C51	(-)	PSIPI	A	16	W/R	+5 \vee COM.
C 51	(-)	PSIPI	B	16	W/R	$+5 \vee$ COM.

Change 1 B-67

TM 1 1-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-2. Power Supply PS1 Wire List - Continued

From		To		Wire		Remarks	
Symbol number	Pin	Symbol number	Pin	Size	Color		
C51	$(-)$	TP5		24	W / R		
C52	(+)	E5		18	W/G		
C52	(+)	CR50	A	22	W/G		
C52	$(+)$	P3	19	24	W / G		
C52	$(+)$	P3	20	24	W/G	Twisted pair.	T
C52	(+	PSIPI	N	16	W/G	$-5 \vee C O M$.	
C52	(+	PSIPI	C	16	W/G	-5 VCOM.	
C52	$(-)$	C20	$(-)$	18	G		
C52	$(-)$	CR50	C	22	G		
C52	(-)	P3	13	24	G		
C52	$(-)$	P3	15	24	G	Twisted pair.	\checkmark
C52	$(-)$	PSIPI	F	20	G	$-5 \vee$.	
C52	(-)	PSIPI	K	20	G	-5V.	
C52	$(-)$	PS IPI	F	20	G	-5	
C53	$(+)$	E6		18	0		
C53	(+)	CR51	A	22	O		
C53	$(+)$	P2	10	24	O		
C53	$(+)$	P2	11	24	0	Twisted pair.	\boldsymbol{F}

Change 1 B-68

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
C53	(+	PSIP1	p	20	\bigcirc	+15V.
C53	$(+)$	PSIPI	R	20	0	+15V.
C53	$(+)$	PS IP 1	P	20	0	+15V.
C53	(+	PSIPI	R	20	0	+15V.
C53	(+	PSIP1	T	20	0	+15V.
C53	(+)	PSIP1	U	20	0	+15V.
C53	(-)	C21	(-)	18	W/O	
C53	(-)	CR5 1	C	22	W/O	
C53	(-)	P2	4	24	W/O	
C53	(-)	P2	8	24	W/O	Twisted pair.
C53	(-)	PSIPI	W	16	W/O	+15 V COM.
C53	(-)	PSIPI	L	16	W/O	+15 V COM.
C54	(+)	E7		18	W/V	
C54	(+)	CR52	A	22	W/	
C54	(+)	P3	10	24	w / \sim	
C54	$(+)$	P3	11	24	W N	Twisted pair.
C54	$(+)$	PSIPI	x	16	W/v	-15 V COM.
C54	(+)	PSIPI	M	16	W/V	-15 V COM.

Change 1 B-69

From		To		Wire		Remorks
Symbol number	Pin	Symbol number	Pin	Size	Color	
C54	(-)	C22	(-)	18	V	
C54	$(-)$	CR52	C	22	v	
C54	$(-)$	P3	4	24	V	
C54	$(-)$	P3	8	24	\checkmark	Twisted pair.
C54	$(-)$	PS IPI	V	20	\checkmark	-15V.
C54	$(-)$	PSIPI	S	20	\checkmark	-15V.
C54	$(-)$	PSIPI	v	20	\checkmark	-15V.
C54	$(-)$	PSIPI	5	20	V	-15V.
C51	$(-)$	C55				
C55		GND				
PSIPI	D	C51	(+	20	R	+5V.
PSIPI	E	C51	(+)	20	R	+5V.
PSIPI	H	C51	(+)	20	R	+5V.
PSIPI	H	C51	(+)	20	R	+5V.
PSIPI	E	C51	(+)	20	R	+5V.
PSIPI	J	C51	(+	20	R	+5V.
PSIPI	D	C51	(+)	20	$\stackrel{\sim}{R}$	+5V.
PSIP1	A	C51	(+)	16	W/R	$+5 \vee$ COM .

Change 1 B-70

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-2. Power Supply PS1 Wire List - Continued

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
PSIPI	B	C51	$(-)$	16	W/R	+5 V COM.
PS IPI	N	C52	(+)	16	W/G	$-5 \vee C O M$.
PSIPI	C	C52	(+)	16	W/G	$-5 \vee C O M$.
PSIPI	F	C52	$(-)$	20	G	-5V.
PSIPI	K	C52	$(-)$	20	G	-5V.
PSIPI	F	C52	$(-)$	20	G	-5V.
PS IP 1	P	C53	(+)	20	0	+15V.
PSIPI	R	C53	(+)	20	0	+15V.
PSIPI	P	C53	$(+)$	20	\bigcirc	+15V.
PSIPI	R	C53	(+)	20	0	+15V.
PSIPI	T	C53	$(+)$	20	0	+15V.
PSIPI	U	C53	$(+)$	20	0	+15 V.
PSIPI	W	C53	$(-)$	16	W/O	+15 V COM.
PSIPI	L	C53	$(-)$	16	W/O	+15 V COM.
PSIPI	x	C54	$(+)$	16	w / v	$-15 \vee$ COM.
PSIPI	M	C54	(+)	16	WN	$-15 \vee$ COM.
PSIPI	V	C54	$(-)$	20	v	-15V.
PSIPI	S	C54	$(-)$	20	v	-15V.

Change 1 B-71

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
PSIPI	v	C54	(-)	20	v	-15V.
PSIPI	S	C54	$(-)$	20	v	-15V.
TPI		CR49	A	24	R	
TP2		CR50	C	24	G	
TP3		CR5 1	A	24	0	
TP4		CR52	C	24	v	
TP5		C51	(-)	24	W / R	
Q4	C	Al	7	20	R	Twisted pair.
Q5	C	Al	9	20	BK	Twisted pair.
Q5	E	C5	(-)	18	W/G	
Q6	C	Al	13	20	W	Twisted pair.
Q7	C	Al	15	20	G	Twisted pair.
Q 10	C	P2	5	24	R	
Q10	B	P2	6	24	W	
Q11	C	P3	5	24	0	
QII	B	P3	6	24	Y	
Q12.	C	C 17	(+	22	BK/BL	
Q12	B	P2	16	24	W/BL	

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-2. Power Supply PS1 Wire List - Continued

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
Q12	E	P2	17	24	Y	
Q13	C	C18	(+)	24	$B K / Y$	
Q13	B	P3	16	24	W	
Q13	E	P3	17	24	G	
Q13	E	Q19	B	24	G	
Q14	E	P2	18	24	W/BK	
Q15	C	C19	(+)	16	W/BK	
Q17	C	C 19	(+)	16	W/BK	
Q19	C	C20	(+)	18	W/BR	
Q19	E	P3	18	24	W/BR	
Q19	B	Q13	E	24	G	
Q20	E	P2	9	24	G	
Q21	C	C21	$(+)$	18	W / Y	
Q22	E	P3	9	24	Y	
Q23	C	C22	(+	18	\checkmark	
RI	A	C5	(+	22	W / R	
R1	B	A3	E	22	W / R	
El		A1	27	22	GY	Twisted pair.

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
E2		Al	25	22	BK	
E3		Al	21	22	W	
E4		Al	19	22	G	Twisted poir.
E5		C52	$(+)$	18	W/G	
E6		C53	(+	18	0	
E7		C54	$(+)$	18	W/N	
E10		C51	(+	16	R	
E13		C51	(+)	16	R	
A3	A	Al	26	22	R	
A3	B	C5	(-)	22	W/G	
A3	C	-				Not used.
A3	D	Al	20	22	R	
A3	E	R 1	B	22	W / R	
P2	1	CR5 1	G	24	0	
P2	2	-				Not used.
P2	3	-				Not used.
P2	4	C53	(-)	24	w/o	
P2	5	Q10	C	24	R	

Change 1 B-74

From		To		Wire		Remarks
Symbol number	Pin	Symbol number	Pin	Size	Color	
E2		A 1	25	22	$B K$	
E3		AI	21	22	W	
E4		Al	19	22	G	Twisted pair.
E5		C52	(+)	18	W/G	
E6		C53	$(+)$	18	0	
E7		C54	$(+)$	18	WN	
E10		C51	$(+)$	16	R	
E13		C51	$(+)$	16	R	
A3	A	A 1	26	22	R	
A3	B	C5	(-)	22	W/G	
A3	C	-				Not used.
A3	D	Al	20	22	R	
A3	E	R1	B	22	W / R	
P2	1	CR5 1	G	24	0	
P2	2	-				Not used.
P2	3	-				Not used.
P2	4	C53	(-)	24	W/O	
P2	5	Q10	C	24	R	

Change 1 B-75

TM 11-5820-804-34/NAVELEX 0969-LP-169-4021/TO 31R5-2G-272
Table B-2. Power Supply PS1 Wire List - Continued

Change 1 B-76

APPENDIX C

GLOSSARY OF TERMS

This appendix defines the mnemonics used to identify the signals carried between cards, card files, and subassemblies.

Mnemonic
Description

A

AA
AAA
ALMRST
ALTCLK
ALTCLKT
ALTOUT
ALTOUTT
AUDALMI. 2
B
BCKOUTT
BRD256C
BUFFOUTT
CBSDATC
CLKONE
CLKOUT
CLKOUTT
CLKZER
CLKOUTC
CLKOUTT
CMPATOC
COMPERRT
COMPCKC
COMPACKT
COMPDTC
COM POVC
CTN-11
DACCLK
DATFD
DATFDCC
DATFE
DATFENC
DATONE
DATOUT
DATOUTT
DATTE
DATTENT
DATZER
DIFDECT
DIFENCC
DISABL
DSALMG
DSTBCK
ENCLKRC
ENOPERC
ENSTDRC
ENTESTC
EXTXGT
ERRCNT
ERROUT
ERRSIG
Table C-1. Glossary of Terms

External Jumper
2R Clock To PN Sequence Generator
2R Clock To Encoder Complement
Alarm Reset
Alternate Clock Output
Alternate Clock Test Output
Alternate Data Output
Alternate Data Test Output
Audible Alarm
2R Clock To Encoder True
Buffered Standard Clock Output True
Error Counter Load Count 256
Standard Data Test Output
Bypass Data
Drive To Clock B Indicator
Standard Clock Output
Clock Output Circuit
Drive to Clock A Indicator
Standard Clock Output Complement
Clock Output Circuit
Comparator Automatic Resync
Comparator Error True
Comparator Clock To Front Panel Connector
Comparator Clock True
Comparator Data Complement
Comparator Overflow Complement
External Jumper On Error Comparator
Clock Complement To D/A Converter, Loop Filter, and PN Sequence Generator
Data From Decoder
Data From External Decoder
Symbols From Coder
Data From Encoder
Drive To Data A Indicator
Standard Data Output
Data To Output Circuits
Data To Coder
Data To Internal Or External Coder
Drive To Data B Indicator
Differential Decoder Enable
Differantial Encoder Enable
+5 V FLTR
Disable Alarm
Grount To Clock Input Of Divide By 37,500 Counter (Internal Clock)
Enable Clocked Data
Enable Operate Mode
Enable Standard Data
Enable Test Mode
+5 V FLTR Jumper On Input Interface
Error Count Enable
Error Pulse To Front Panel Connector
Monitor Meter Return

Mnemonic

Table C-1 Glossary of Terms-Continued

EXTALM1,2
EXTDECC
EXTDECT
EXTENCC
EXTENCT
ICFCLKT
ICFDATT
ICFRLYE
ICFRYDAT
IFCOB75
ICFOV50+
ICFOU75 +
CFIB75
ICFIN50 t
ICFIN75
ICF1
ICF2
INCLK
INSTD
INTCLK
INTCLKT
LFMSBT
LFOVERC
LFTRANT
LFUNDRT
LOSINB +
LOSSLTC
LPFCLKT
MANSMPC
MSBTD
NODECC
NOENCC
OLCST
PULLUP+
RBSBRC
RBSBRT
RBSBSSC
RBSDATT
RCKFD
RCKFDCT
RCKTD
RCKTDCT
RCKTE
RCLKTE +
RDAC-I
RDAC-2
RDAC-3
RDAC-4
RDAC-5
RDAC-6
RDAC-7
RDAC-8 RDUMP
RLDPGM
RLFOVRC
RLFUNDT
RMIXD
RMIXO
RSAMP
RSIGNT
RSYNTST
RTCXO
RTRANT
RVCO
RVCONT

External Alarm Contact Closure
External Decoder Enable Complement
External Decoder Enable True
External Encoder Enable Complement
External Encoder Enable True
ICF Clock
ICF Test Data
Operate/Test Relay Control
Receive ICF Data To Bit Detector
Bipolar Output 75 Ohm Balanced
Bipolar NRZ Output 50 Ohm Unbalanced
Bipolar Output 75 Ohm Unbalanced
75 Ohm Input (Balanced)
50 Ohm Input (Unbalanced)
75 Ohm Input (Unbalanced)
Decoded ICF Signals (before combining)
Decoded ICF Signals (before combining)
Standard Clock Input
Standard Data Input
Internal Clock Output
Test Output To PN Sequence Generator
Transmit Data MSB To Loop Filter
Transmit Loop Filter Overflow
Transmit Data Transition To Loop Filter
Transmit Loop Filter Underflow
LOS Input
Receive Bit Sync Loss Of Lock Indicator
Transmit Loop Filter Clock
Comparator Manual Resync
Most Significant Bit To External Decoder
No Decoding
No Encoding
LOS Output
+5 V On Counter Load Inputs
Receive Bit Sync Bit Rate Complement
Receive Bit Sync Bit Rate True
Frequency Control To Receive Frequency Synthesizer VCO
Receive Bit Sync Data True
Receive Clock From External Decoder
R Clock From External Decoder
Receive Clock To External Decoder
Receive Clock To Decoder Interface True
Clock To Coder
R Clock To Encoder True
Receive Loop Filler Output To D/A Converter

Receive Integrator Dump Signal
Receive Load Program
Receive Loop Filter Overflow
Receive Loop Filter Underflow
$30 \pm 10 \mathrm{MHz}$ To Receive Reference Divider
Receive Synthesizer $30 \pm 10 \mathrm{MHz}$ From Mixer/Output Amplifier
Receive Sample From Programmable Divider
Receive Sign Bit To Loop filter
Receive Test Of VCO Control Voltage To Meter
Receive Synthesizer 15 MHz TCXO Output
Receive Data Transition To Loop Filter
Receive 15 MHz VCO Output
Control To Receive 15 MHz VCO

Table C-1. Glossary of Terms-Continued

Mnemonic

RXBSLOL
RXFAIL

Receive Bit Sync Loss Of Lock Indication
Receive Section Fault Indication
m Control
RXMPD-2
RXMPD-4
RXMPD-8
RXMX1
RXMX2
RXMX4
RXMX8
RXPDO-1
RX PDO-2
RXPDO-4
RXPDO-8
RXPDI-1
RXPDI-2
RXPD1-4
RXPD1-8
RXPD2-1
RXPD2-2
RXPD2-4
RSPD2-8
RSPD3-1
RXPD3-2
RXPD3-4
RXPD3-8
RXPD4-1
RXPD4-2
RXPD4-4
RXPD4-8
RXPD5-1
RXPD5-2
RXPD5-4
RXPD5-8
RXSYNRC
RXSYNRT
RX9-0-1
RX9-0-2
RX9-0-4
RX9-0-8
RX9-1-1
RX9-1-2
RX9-1-4
RX9-1-8
RX9-2-1
RX9-2-2
RX9-2-4
RX9-2-8
RX9-3-1
RX9-3-2
RX9-3-4
RX9-3-8
RX9-4-1
RX9-4-2
RX9-4-4
RX9-4-8
RO-COM
R1-COM
R2-COM
R3-COM
R4-COM
R1-1OM
Rl-1OMT
R10-100K
R100K-1M

Symbol Rate Switch Setting Between 50000 and 99999
Symbol Rate Switch Setting Between 25000 and 49999
Symbol Rate Switch Setting Between 12500 and 24999
Symbol Rate Switch Setting Between 10000 and 12499
Digit I (Least Significant) Of Counter Encoder Program Output
(Receive Synthesizer)
Digit 2 Of Counter Encoder Program Output (Receive
Synthesizer)
Digit 3 Of Counter Encoder Program Output (Receive
Synthesizer)
Digit 4 Of Counter Encoder Program Output (Receive
Synthesizer)
Digit 5 (Most Significant) Of Counter Encoder Program Output
(Receive Synthesizer)
Counter Encoder Multiplier Code To Synthesizer
(Receive Synthesizer)
Receive Bit Sync Clock Complement
Receive Bit Sync Clock True
Least Significant Symbol Rate Digit Includes 9's Complement Of 20
Least Significant Symbol Rate Digit Includes 9's Complement Of 2'
Least Significant Symbol Rate Digit Includes 9's Complement Of 2'
Least Significant Symbol Rate Digit Includes 9's Complement Of 21
Next Least Significant Symbol Rate Digit Includes 9's Complement Of 2"
Next Least Significant Symbol Rate Digit Includes 9's Complement Of 2'
Next Least Significant Symbol Rate Digit Includes 9's Complement Of 2'
Next Least Significant Symbol Rate Digit Includes 9's Complement Of 2'
MidD1e Significant Digit Symbol Rate Digit Includes 9's Complement Of 2"
MidD1e Significant Digit Symbol Rate Digit Includes 9's Complement Of 2'
MidD1e Significant Digit Symbol Rate Digit Includes 9's Complement Of 2'
MidD1e Significant Digit Symbol Rate Digit Includes 9's Complement Of 2'
Next Most Significant Symbol Rate Digit Includes 9's Complement Of 2"
Next Most Significant Symbol Rate Digit Includes 9's Complement Of 2'
Next Most Significant Symbol Rate Digit Includes 9's Complement Of 2'
Next Most Significant Symbol Rate Digit Includes 9's Complement Of 21
Most Significant Symbol Rate Digit Includes 9's Complement Of 2°
Most Significant Symbol Rate Digit Includes 9's Complement Of 2'
Most Significant Symbol Rate Digit Includes 9's Complement Of 2'
Most Significant Symbol Rate Digit Includes 9's Complement Of 2'
+5 V To Receive Symbol Rate S5
+5V To Receive Symbol Rate S4
+5 V To Receive Symbol Rate S3
+5 V To Receive Symbol Rate S2
+5 V To Receive Symbol Rate S1
Symbol Rate Switch Selection Between I and 9.9999 MHz Complement
Symbol Rate Switch Selection Between 1 and 9.9999 MHz True
Symbol Rate Switch Selection Between 19.2 and $99.999 \mathrm{~kb} / \mathrm{s}$
Symbol Rate Switch Selection Between 100 and 999.99 kb/s

Table C-1. Glossary of Terms-Continued

Description

Mnemonic
RIOOKIMT
RIO10OKT
R15MIX
R44MA
R45MIX
R45MVCO
SGNTD
SGN-11
SMPSTRC
SQGENCK
SYNCNII
TBSBSSC
TBSDATC
TBSDATT
TBSLOLC
TBS2RC
TDAC-1
TDAC-2
TDAC-3
TDAC-4
TDAC-5
TDAC-6
TDAC-7
TDAC-8
TDUMP
TESTM15
TESTM5V
TESTP15
TESTP5V
THERMO
TLDPGM
TMIXD
TMIXO
TSAMP
TSCMO
TSCTCXO
TSC45M
TSEQ+
TSEQBRC
TSTALT
TSTICF
TSTRXBS
TSTSEQ
TSTXXBS
TSYNTST
TTXLO
TVCO
TVCONT
TXBSDTT
TXBSFL
TXFAIL
TXMXI
TXMX2
TXMX4
TXMX8
TXPPD-1
TXPDO-2
TXDPO-4
TXPDO-8
TXPDII-1
TSPD-2
TXPDD1-4
TXPDI-8
TSPD2-1
TXPD2--2
TXPD)2-4
TXPPD2-8

Symbol Rate Switch Selection Between 100 and $999.99 \mathrm{~kb} / \mathrm{s}$ True
Symbol Rate Switch Selection Between 19.2 and $99.999 \mathrm{~kb} / \mathrm{s}$
Synthesizer 15 MHz Input To Mixer
Receive 45 MHz Amplifier Input
Synthesizer 45 MHz Input To Mixer
Receive 45 MHz VCO Output
Sign Bit To Decoder
PN Sequence Generator External Jumper From Stage 11
External Jumper To Resync Comparator
Sequence Generator Clock
2047 Bit Sync
Frequency Control To Transmit Frequency Synthesizer VCO
Transmit Bit Sync Data Complement Output
Transmit Bit Sync Data True Output (Test)
Transmit Bit Sync Loss Of Lock
Transmit Bit Sync Clock X2
Transmit Loop Filter Output To D/A Converter

Transmit Integrator Dump Signal
--15 V To Monitor Meter
-5 V To Monitor Meter
+15 V To Monitor Meter +5 V To Monitor Meter
Overtemperature indication
Transmit Load Program
$30+\mathrm{MHz}$ To Transmit Reference Divider
Transmit Synthesizer 30 - 10 MHz From Mixer/Output Amplifier
Transmit Sample From Programmable Divider
Stable Clock To Reference Divider
45 MHz To Stable Clock
15 MHz Reference To Transmit Stable Clock
Test Sequence (2047 Bit PRN)
Test Sequence Bit Rate
Test Alternate Data
Test ICF Input
Test Receive Bit Sync
Test Sequence
Test Transmit Bit Sync
Transmit Test Of VCO Control Voltage To Meter
Transmit Synthesizer 15 MHz TCXO Output
Transmit 15 MHz VCO Output
Control To Transmit 15 MHz VCO
Data To Transmit Bit Sync
Transmit Bit Sync Fault Indication
Transmit Section Fault Indication
Transmit Rate Switch Setting Between 50000 and 99999
Transmit Rate Switch Setting Between 25000 and 49999
Transmit Rate Switch Setting Between 12500 and 24999
Transmit Rate Switch Setting Between 10000 and 12499
Digit 1 (Least Significant) Of Counter Encoder Program Output
(Transmit Synthesizer)
Digit 2 Of Counter Encoder Program Output (Transmit
Synthesizer)
Digit 3 Of Counter Encoder Program Output (Transmit
Synthesizer)

Table C-1. Glossary of Terms-Continued

 Description

 Description}

Mnemonic

TXPD3-1
TXPD3-2
TXPD3-4
TXPD3-8
TXPD4-1
TXPD4-2
TXPD4-4
TXPD4-8
TXPD5-1
TXPD5-2
TXPD5-4
TXPD5-8
TXSYNRC
TXSYNRT
TXSYNTR
TX9-0-1
TX9-0-2
TX9-0-4
TX9-0-8
TX9-1-1
TX9-1-2
TX9-1-4
TX9-1-8
TX9-2-1
TX9-2-2
TX9-2-4
TX9-2-8
TX9-3-1
TX9-3-2
TX9-3-4
TX9-3-8
TX9-4-1
TX9-4-2
TX9-4-4
TX9-4-8
TO-COM
T1-COM
T2-COM
T3-COM
T4-COM
TI-1OM
Tl-1OMT
T10-100K
T100K-1M
T100K1MT
T10100KT
T45MA
T45MIX
T45MVCO
2RCKFE
2RCKFEC
2RCKTD
2RCKTE

Digit 4 Of Counter Encoder Program Output (Transmit
Synthesizer)
Digit 5 (Most Significant) Of Counter Encoder Program Output
(Transmit Synthesizer)
Counter Encoder Multiplier Code To Synthesizer (Transmit
Synthesizer)
Transmit Bit Sync Clock Complement
Transmit Bit Sync Clock True
Internal Clock Generator Output
Least Significant Transmit Rate Digit Includes 9's Complement Of 20 Least Significant Transmit Rate Digit Includes 9's Complement Of 2' Least Significant Transmit Rate Digit Includes 9's Complement Of 2' Least Significant Transmit Rate Digit Includes 9's Complement Of 2'
Nest Least Significant Transmit Rate Digit Includes 9's Complement Of 20 Next Least Significant Transmit Rate Digit Includes 9's Complement Of 21
Next Least Significant Transmit Rate Digit Includes 9's Complement Of 2'
Next Least Significant Transmit Rate Digit Includes 9's Complement Of 2'
Middle Significant Digit Transmit Rate Digit Includes 9's Complement Of 2o
Middle Significant Digit Transmit Rate Digit Includes 9's Complement Of 2'
Middle Significant Digit Transmit Rate Digit Includes 9's Complement Of 2'
Middle Significant Digit Transmit Rate Digit Includes 9's Complement Of 2'
Next Most Significant Transmit Rate Digit Includes 9's Complement Of 20
Next Most Significant Transmit Rate Digit Includes 9's Complement Of 21
Next Most Significant Transmit Rate Digit Includes 9's Complement Of 2'
Next Most Significant Transmit Rate Digit Includes 9's Complement Of 2'
Most Significant Transmit Rate Digit Includes 9's Complement Of 2'
Most Significant Transmit Rate Digit Includes 9's Complement Of 2'
Most Significant Transmit Rate Digit Includes 9's Complement Of 2'
Most Significant Transmit Rate Digit Includes 9's Complement Of 2'
+5 V To Transmit Data Rate Switch S5
+5 V To Transmit Data Rate Switch S4
+5 V To Transmit Data Rate Switch S3
+5 V To Transmit Data Rate Switch S2
+5 V To Transmit Data Rate Switch S1
Transmit Rate Switch Selection Between 1 and $9.9999 \mathrm{Mb} /$ s Complement
Transmit Rate Switch Selection Between 1 and $9.9999 \mathrm{Mb} / \mathrm{s}$ True
Transmit Rate Switch Selection Between 19.2 and 99.999 kb/s
Transmit Data Rate Switch Selection 100 and $999.99 \mathrm{~kb} / \mathrm{s}$
Transmit Rate Switch Selection Between 100 and 999.99 kb/s True
Transmit Rate Switch Selection Between 19.2 and 99.999 kb/s True
Transmit 45 MHz Amplifier Input
45 MHz Input To Mixer
Transmit 45 MHz VCO Output
2X Clock To Coder
2R Clock From Encoder
2R Clock To Decoder
2R Clock To Encoder Complement

By Order of the Secretary of the Army:

Official:
FRED C. WEYAND General, United States Army

PAUL T. SMITH
Major General, United States Army
The Adjutant General
DISTRIBUTION:
Active Army: Chief of Staff

\author{

USASA (2)	Svc College (1)
COE (1)	USASESS (5)
TSG (1)	USAINTCS (3)
DARCOM (1)	USAADS (2)
MICOM (2)	USAARMS (2)
TECOM (2)	USAIS (2)
TRADOC (2)	USAES (2)
ARADCOM (2)	MAAG (1)
ARADCOM Rgn (2)	USARMIS (1)
OS Maj Comd (4)	USAERDAA (1)
LOGCOMDS (3)	USAERDAW (1)
USACC (4)	Sig FLDMS (1)

}

ARNO \& USAR: None.
For explanation of abbreviations used, e AR 10-bO0.
*U.S. GOVERNMENT PRINTING OFFICE: 1981 O-361-647 (2690)

Contractor: Shoot this imprint at 55\% and strip in

Figure FO-2. Fault and status monitor, functional block diagram.

Figure FO-3. Test circuits, functional block diagram.

Figure FO-5. Transmit bit detector, A2A1A1A17, A2A1A2A11 (SM-D-742045) schematic diagram.

Figure FO-6. Loop filter, A2A1A1A16, A2A1A2A12 (SM-D-731221) schematic diagram.

1. Partial refrenct disignations are SHOWN FOR COMPLETE DESIGNATION
PREFIX WITH UNIT NO. ANO SUBASSEMBLI designations.
2. UNLESS OTHERWISE SPECIIIED, RESISTANCE VALUES ARE IN OHMS, 5%, $1 / 4 \mathrm{w}$.
CAPACITANCE VALUES ARE IN MICROFARADS
3. UI IS PARTNO. SM-A-731357 (UGB959559× Y I IS PART No. 251-1209
pinsand of ulis connected io -st fir. pina of ul is connecteo to CIRCUTT RETURN. PIN 12 OF UII
CONNECIED TO -SV FLTR
4. recfiver reference oscillator How in parentheses.

Figure FO-9. Reference divider, A2A1A1A5, A2A1A2A20 (SM-D-742133), schematic diagram.

Figure FO-10. 45 MHz phase lock loop, A2A1A1A6, A2A1A2A18 (SM-D-742113) schematic diagram.

Figure FO-11. 45 MHz amplifier, A2A1A1A8, A2A1A2A16 (SM-D-742117) schematic diagram.

Figure FO-12. Programmable divider, A2A1A1A2, A2A1A2A23 (SM-D-742109) schematic diagram.

Figure FO-13. Counter encoder, A2A1A1A1, A2A1A2A24 (SM-D-742105) schematic diagram.

Figure FO-14. 15 MHz amplifier, A2A1A1A1A11, A2A1A2A14 (SM-D-742121) schematic diagram

Figure FO-15. Mixer/output amplifier, A2A1A1A10, A2A1A2A15 (SM-D-742125) schematic diagram.

Figure FO-16. Coder switch, A2A1A2A6 (SM-D-742041) schematic diagram.

Figure FO-18. LOS/cable driver, A2A1A2A3 (SM-D-742081) schematic diagram.

Figure FO-18.1. NRZ interface, A2A1A2A2 (SM-D-877791) schematic diagram.

Figure FO-19. LOS/cable receiver and decoder. A2A1A2A1 (SM-D-742089) schematic diagram.

Figure FO-21. Stable clock, A2A1A1A12 (SM-D-731201) schematic diagram.

2. UMESSS THEERUSE SPREFFED: 3. 1.

4it.

 WITI

EL3CN012

Figure FO-23. Error comparator, A2A1A2A8 (SM-D-742061) schematic diagram.

Figure FO-24. Digital-to-analog meter, A2A1A2A9 (SM-D-742065) schematic diagram.

Figure FO-25. Alarm circuits, A2A1A2A10 (SM-D-742033) schematic diagram.

Figure FO-26. (1). ICF modem, interconnection diagram (sheet 1 of 2)

Figure FO-26 (2). ICF modem, interconnection diagram (sheet 2 of 2)

		como	\bigcirc	-	为					
cosen	sers	come	,	cose	Lextrex	coum	Nixicis	come		
mame	-	\%	:	,				mam	"	
	$\stackrel{2}{3}$	en	?		com				\%	
gex	:	=as.	$:$		1 ceome	motio	\%			
Steme	;	manmen	\therefore	nue						
aser	;	\%ent	:	${ }^{\text {senver }}$)utuen			

为

sum tex wo

Qxuvers or case conme

$$
\begin{aligned}
& \cdots .
\end{aligned}
$$

vaven

axal Leat
o.sp- ripe

Figure FO-27. Color code marking for military standard resistors. Inductors and capacitors.

EL 5820-804-34-TM-70
Figure FO-28. Power supply PS1 (SM-C-759630), schematic diagram.

Figure FO-29. Power supply PSI, assembly A2 (SM-D-882232), schematic diagram.

PIN: 018145-000

[^0]: This copy is a reprint which includes current pages from Changes 1.

[^1]: (SYNTH E JIT SYNC)
 SIZE COCE IDENT NO.

[^2]: SIIE CCCE IDENT NO.

[^3]: SIZE CCDE IDENT NO．

